Hallmarks of Cancer: The Next Generation

被引:48104
作者
Hanahan, Douglas [1 ,2 ]
Weinberg, Robert A. [3 ,4 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Inst Expt Canc Res, Sch Life Sci, CH-1015 Lausanne, Switzerland
[2] UCSF, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[3] Ludwig MIT Ctr Mol Oncol, Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[4] MIT Dept Biol, Cambridge, MA 02142 USA
关键词
EPITHELIAL-MESENCHYMAL TRANSITION; DNA-DAMAGE RESPONSE; DOUBLE-EDGED-SWORD; STEM-CELLS; TGF-BETA; TUMOR PROGRESSION; TELOMERE LENGTH; ENDOGENOUS INHIBITORS; LINKING INFLAMMATION; CELLULAR SENESCENCE;
D O I
10.1016/j.cell.2011.02.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
引用
收藏
页码:646 / 674
页数:29
相关论文
共 246 条
  • [81] Endothelial-Mural Cell Signaling in Vascular Development and Angiogenesis
    Gaengel, Konstantin
    Genove, Guillem
    Armulik, Annika
    Betsholtz, Christer
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2009, 29 (05) : 630 - 638
  • [82] Necroptosis: A Specialized Pathway of Programmed Necrosis
    Galluzzi, Lorenzo
    Kroemer, Guido
    [J]. CELL, 2008, 135 (07) : 1161 - 1163
  • [83] Targeting microRNAs in cancer: rationale, strategies and challenges
    Garzon, Ramiro
    Marcucci, Guido
    Croce, Carlo M.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2010, 9 (10) : 775 - 789
  • [84] Pericytes: gatekeepers in tumour cell metastasis?
    Gerhardt, Holger
    Semb, Henrik
    [J]. JOURNAL OF MOLECULAR MEDICINE-JMM, 2008, 86 (02): : 135 - 144
  • [85] Mouse models in tumor suppression
    Ghebranious, N
    Donehower, LA
    [J]. ONCOGENE, 1998, 17 (25) : 3385 - 3400
  • [86] Role of Carcinoma-Associated Fibroblasts and Hypoxia in Tumor Progression
    Giaccia, Amato J.
    Schipani, Ernestina
    [J]. DIVERSE EFFECTS OF HYPOXIA ON TUMOR PROGRESSION, 2010, 345 : 31 - 45
  • [87] Making a tumour's bed: glioblastoma stem cells and the vascular niche
    Gilbertson, Richard J.
    Rich, Jeremy N.
    [J]. NATURE REVIEWS CANCER, 2007, 7 (10) : 733 - 736
  • [88] IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion
    Gocheva, Vasilena
    Wang, Hao-Wei
    Gadea, Bedrick B.
    Shree, Tanaya
    Hunter, Karen E.
    Garfall, Alfred L.
    Berman, Tara
    Joyce, Johanna A.
    [J]. GENES & DEVELOPMENT, 2010, 24 (03) : 241 - 255
  • [89] Immunity, Inflammation, and Cancer
    Grivennikov, Sergei I.
    Greten, Florian R.
    Karin, Michael
    [J]. CELL, 2010, 140 (06) : 883 - 899
  • [90] Identifying site-specific metastasis genes and functions
    Gupta, G. P.
    Minn, A. J.
    Kang, Y.
    Siegel, P. M.
    Serganova, I.
    Cordon-Cardo, C.
    Olshen, A. B.
    Gerald, W. L.
    Massague, J.
    [J]. Molecular Approaches to Controlling Cancer, 2005, 70 : 149 - 158