Endocannabinoids mediate neuron-astrocyte communication

被引:436
作者
Navarrete, Marta [1 ]
Araque, Alfonso [1 ]
机构
[1] CSIC, Inst Cajal, E-28002 Madrid, Spain
关键词
D O I
10.1016/j.neuron.2008.01.029
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoidrelated addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.
引用
收藏
页码:883 / 893
页数:11
相关论文
共 54 条
[1]  
Alger BE, 2002, PROG NEUROBIOL, V68, P247
[2]   Glutamate released from glial cells synchronizes neuronal activity in the hippocampus [J].
Angulo, MC ;
Kozlov, AS ;
Charpak, S ;
Audinat, E .
JOURNAL OF NEUROSCIENCE, 2004, 24 (31) :6920-6927
[3]   Tripartite synapses: glia, the unacknowledged partner [J].
Araque, A ;
Parpura, V ;
Sanzgiri, RP ;
Haydon, PG .
TRENDS IN NEUROSCIENCES, 1999, 22 (05) :208-215
[4]   Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices [J].
Araque, A ;
Martin, ED ;
Perea, G ;
Arellano, JI ;
Buño, W .
JOURNAL OF NEUROSCIENCE, 2002, 22 (07) :2443-2450
[5]   Dynamic signaling between astrocytes and neurons [J].
Araque, A ;
Carmignoto, G ;
Haydon, PG .
ANNUAL REVIEW OF PHYSIOLOGY, 2001, 63 :795-813
[6]   Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons [J].
Araque, A ;
Parpura, V ;
Sanzgiri, RP ;
Haydon, PG .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (06) :2129-2142
[7]   Control of synaptic strength by glial TNFα [J].
Beattie, EC ;
Stellwagen, D ;
Morishita, W ;
Bresnahan, JC ;
Ha, BK ;
Von Zastrow, M ;
Beattie, MS ;
Malenka, RC .
SCIENCE, 2002, 295 (5563) :2282-2285
[8]   Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus [J].
Bergles, DE ;
Roberts, JDB ;
Somogyi, P ;
Jahr, CE .
NATURE, 2000, 405 (6783) :187-191
[9]   Prostaglandins stimulate calcium-dependent glutamate release in astrocytes [J].
Bezzi, P ;
Carmignoto, G ;
Pasti, L ;
Vesce, S ;
Rossi, D ;
Rizzini, BL ;
Pozzan, T ;
Volterra, A .
NATURE, 1998, 391 (6664) :281-285
[10]   GABAB receptors regulate chick retinal calcium waves [J].
Catsicas, M ;
Mobbs, P .
JOURNAL OF NEUROSCIENCE, 2001, 21 (03) :897-910