Newtonian jerky dynamics: some general properties

被引:34
作者
Linz, SJ [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
D O I
10.1119/1.19052
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We clarify and generalize the recently introduced concept of a Newtonian jerky dynamics. We also discuss several analytically accessible properties of these systems, including their general functional form, periodic solutions and conserved quantities, symmetries, and nonchaotic behavior. (C) 1998 American Association of Physics Teachers.
引用
收藏
页码:1109 / 1114
页数:6
相关论文
共 16 条
[1]   POWER SPECTRAL-ANALYSIS OF A DYNAMICAL SYSTEM [J].
CRUTCHFIELD, J ;
FARMER, D ;
PACKARD, N ;
SHAW, R ;
JONES, G ;
DONNELLY, RJ .
PHYSICS LETTERS A, 1980, 76 (01) :1-4
[2]  
EICHHORN R, IN PRESS PHYS REV E
[3]   Non-chaotic behaviour in three-dimensional quadratic systems [J].
Fu, Z ;
Heidel, J .
NONLINEARITY, 1997, 10 (05) :1289-1303
[4]   Question # 38. What is the simplest jerk function that gives chaos? [J].
Gottlieb, HPW .
AMERICAN JOURNAL OF PHYSICS, 1996, 64 (05) :525-525
[5]  
HUBBARD J, 1995, SPRINGER TEXTS APPL, V18
[6]  
Linz S. J., 1995, European Journal of Physics, V16, P67, DOI 10.1088/0143-0807/16/2/004
[7]   Nonlinear dynamical models and jerky motion [J].
Linz, SJ .
AMERICAN JOURNAL OF PHYSICS, 1997, 65 (06) :523-526
[8]  
LINZ SJ, UNPUB COMMUNICATION
[9]  
LINZ SJ, UNPUB Z ANGEW MATH M
[10]   A THERMALLY EXCITED NON-LINEAR OSCILLATOR [J].
MOORE, DW ;
SPIEGEL, EA .
ASTROPHYSICAL JOURNAL, 1966, 143 (03) :871-&