Stochastic input-to-state stability and applications to global feedback stabilization

被引:118
作者
Tsinias, J [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
D O I
10.1080/002071798221632
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Notions of stochastic input-to-state stability are introduced and their Lyapunov characterizations are established. These notions constitute extensions of the deterministic ISS proposed by E. Sontag and are used to derive sufficient conditions for global stabilization for triangular stochastic systems by means of output-and bounded-static feedback, as well as by dynamic feedback controller.
引用
收藏
页码:907 / 930
页数:24
相关论文
共 21 条
[1]  
Arnold L., 1974, STOCHASTIC DIFFERENT, DOI DOI 10.1002/ZAMM.19770570413
[2]   Stochastic nonlinear stabilization .2. Inverse optimality [J].
Deng, H ;
Krstic, M .
SYSTEMS & CONTROL LETTERS, 1997, 32 (03) :151-159
[3]   Stochastic nonlinear stabilization .1. A backstepping design [J].
Deng, H ;
Krstic, M .
SYSTEMS & CONTROL LETTERS, 1997, 32 (03) :143-150
[4]  
DENG H, 1998, UNPUB IEEE T AUTOMAT
[5]  
DENG H, 1997, UNPUB OUTPUT FEEDBAC
[6]   LYAPUNOV-LIKE TECHNIQUES FOR STOCHASTIC STABILITY [J].
FLORCHINGER, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (04) :1151-1169
[7]   Feedback stabilization of affine in the control stochastic differential systems by the control lyapunov function method [J].
Florchinger, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (02) :500-511
[8]  
FLORCHINGER P, 1995, NOLCOS 95 P, P837
[9]  
FREEMAN R, 1997, IN PRESS IEEE T AUTO
[10]   Inverse optimality in robust stabilization [J].
Freeman, RA ;
Kokotovic, PV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (04) :1365-1391