Stochastic input-to-state stability and applications to global feedback stabilization

被引:118
作者
Tsinias, J [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
D O I
10.1080/002071798221632
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Notions of stochastic input-to-state stability are introduced and their Lyapunov characterizations are established. These notions constitute extensions of the deterministic ISS proposed by E. Sontag and are used to derive sufficient conditions for global stabilization for triangular stochastic systems by means of output-and bounded-static feedback, as well as by dynamic feedback controller.
引用
收藏
页码:907 / 930
页数:24
相关论文
共 21 条
[11]   SMALL-GAIN THEOREM FOR ISS SYSTEMS AND APPLICATIONS [J].
JIANG, ZP ;
TEEL, AR ;
PRALY, L .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1994, 7 (02) :95-120
[12]  
Khasminskii R. Z., 1980, STOCHASTIC STABILITY
[13]  
Kushner J., 1967, STOCHASTIC STABILITY
[14]   STOCHASTIC STABILIZATION AND DESTABILIZATION [J].
MAO, XR .
SYSTEMS & CONTROL LETTERS, 1994, 23 (04) :279-290
[15]   EXPONENTIAL STABILITY OF LARGE-SCALE STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
MAO, XR .
SYSTEMS & CONTROL LETTERS, 1992, 19 (01) :71-81
[16]  
PAN Z, 1996, UNPUB SIAM J CONTROL
[17]   Output-to-state stability and detectability of nonlinear systems [J].
Sontag, ED ;
Wang, Y .
SYSTEMS & CONTROL LETTERS, 1997, 29 (05) :279-290
[18]   SMOOTH STABILIZATION IMPLIES COPRIME FACTORIZATION [J].
SONTAG, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (04) :435-443
[19]  
Tsinias J., 1997, ESAIM. Control, Optimisation and Calculus of Variations, V2, P57, DOI 10.1051/cocv:1997103
[20]  
Tsinias J., 1996, J MATH ESTIMATION CO, V6, P113