Mitochondria and ageing: winning and losing in the numbers game

被引:55
作者
Passes, Joao F. [1 ]
von Zglinicki, Thomas [1 ]
Kirkwood, Thomas B. L. [1 ]
机构
[1] Univ Newcastle, Inst Hlth & Aging, Henry Wellcome Lab Biogerontol Res, Ctr Integrated Syst Biol Ageing & Nutr, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1002/bies.20634
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial dysfunction has long been considered a key mechanism in the ageing process but surprisingly little attention has been paid to the impact of mitochondrial number or density within cells. Recent reports suggest a positive association between mitochondrial density, energy homeostasis and longevity. However, mitochondrial number also determines the number of sites generating reactive oxygen species (ROS) and we suggest that the links between mitochondrial density and ageing are more complex, potentially acting in both directions. The idea that increased density, especially when combined with mitochondrial dysfunction, might accelerate ageing is supported by a negative correlation between mitochondrial density and maximum longevity in an interspecies comparison in mammals, and by evidence for an intimate interconnection between cellular ROS levels, mitochondrial density and cellular ageing. Recent data suggest that retrograde response, which activates mitochondrial biogenesis, accompanies cellular ageing processes. We hypothesise that increased mitochondrial biogenesis, and possibly also impaired degradation and segregation of mitochondria, if occurring as adaptation to pre-existing mitochondrial dysfunction, might aggravate ROS production and thus actively contribute to ageing.
引用
收藏
页码:908 / 917
页数:10
相关论文
共 99 条
[1]  
Allen RG, 1999, J CELL PHYSIOL, V180, P114, DOI 10.1002/(SICI)1097-4652(199907)180:1<114::AID-JCP13>3.0.CO
[2]  
2-0
[3]   CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation [J].
Arnould, T ;
Vankoningsloo, S ;
Renard, P ;
Houbion, A ;
Ninane, N ;
Demazy, C ;
Remacle, J ;
Raes, M .
EMBO JOURNAL, 2002, 21 (1-2) :53-63
[4]   Changes in rat liver mitochondria with aging -: Lon protease-like activity and Nε-carboxymethyllysine accumulation in the matrix [J].
Bakala, H ;
Delaval, E ;
Hamelin, M ;
Bismuth, J ;
Borot-Laloi, C ;
Corman, B ;
Friguet, B .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (10) :2295-2302
[5]   Mitochondria, oxidants, and aging [J].
Balaban, RS ;
Nemoto, S ;
Finkel, T .
CELL, 2005, 120 (04) :483-495
[6]   Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals [J].
Barja, G ;
Herrero, A .
FASEB JOURNAL, 2000, 14 (02) :312-318
[7]   Rate of generation of oxidative stress-related damage and animal longevity [J].
Barja, G .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 (09) :1167-1172
[8]   LOW MITOCHONDRIAL FREE-RADICAL PRODUCTION PER UNIT O-2 CONSUMPTION CAN EXPLAIN THE SIMULTANEOUS PRESENCE OF HIGH LONGEVITY AND HIGH AEROBIC METABOLIC-RATE IN BIRDS [J].
BARJA, G ;
CADENAS, S ;
ROJAS, C ;
PEREZCAMPO, R ;
LOPEZTORRES, M .
FREE RADICAL RESEARCH, 1994, 21 (05) :317-327
[9]   Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging [J].
Barrientos, A ;
Casademont, J ;
Cardellach, F ;
Estivill, X ;
Urbano-Marquez, A ;
Nunes, V .
MOLECULAR BRAIN RESEARCH, 1997, 52 (02) :284-289
[10]   Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process [J].
Barrientos, A ;
Casademont, J ;
Cardellach, F ;
Ardite, E ;
Estivill, X ;
Urbano-Marquez, A ;
Fernandez-Checa, JC ;
Nunes, V .
BIOCHEMICAL AND MOLECULAR MEDICINE, 1997, 62 (02) :165-171