On the use of the reverse micelles synthesis of nanomaterials for lithium-ion batteries

被引:6
作者
Jose Aragon, Maria [1 ]
Lavela, Pedro [1 ]
Leon, Bernardo [1 ]
Perez-Vicente, Carlos [1 ]
Luis Tirado, Jose [1 ]
Vidal-Abarca, Candela [1 ]
机构
[1] Univ Cordoba, Lab Quim Inorgan, E-14071 Cordoba, Spain
关键词
Lithium batteries; Reverse micelles; Synthesis of nanoparticles; Transition metal oxides; Transition metal oxysalts; OXALATE NANORIBBONS; ELECTRODE MATERIAL;
D O I
10.1007/s10008-010-1026-8
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The reverse micelles procedure is a convenient route for the preparation of nanomaterials. Chemical reactions in aqueous media are carried out within a restricted volume, limited by the array of surfactant molecules. The versatility of this technique allows its use in the preparation of different electrode materials for lithium-ion batteries. The thermolysis of the reagents in aqueous solution in the micellar volume by contact with hot kerosene allows the preparation of LiCoO2, LiMn2O4, and LiNi0.5Mn1.5O4 fine powders with good electrochemical behavior. The conversion electrode material Co3O4 was prepared with controlled particle size and microstructure by a precipitation reaction in the micellar volume. The electrochemical response found in lithium cells was excellent after optimizing the annealing procedure. Cobalt and iron oxalate nanoribbons and submicrometric rhombic particles of manganese carbonate have been prepared by the reverse micelles procedure and partially behave as conversion oxide electrodes. The electrochemical reaction with lithium of these new oxysalt materials takes place by a different conversion reaction than the corresponding oxide, and a surface capacitive contribution has also been detected.
引用
收藏
页码:1749 / 1753
页数:5
相关论文
共 10 条
[1]   Submicronic particles of manganese carbonate prepared in reverse micelles:: A new electrode material for lithium-ion batteries [J].
Aragon, M. J. ;
Perez-Vicente, C. ;
Tirado, J. L. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (07) :1744-1748
[2]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[3]   Synthesis and Electrochemical Reaction with Lithium of Mesoporous Iron Oxalate Nanoribbons [J].
Jose Aragon, Maria ;
Leon, Bernardo ;
Perez Vicente, Carlos ;
Tirado, Jose L. .
INORGANIC CHEMISTRY, 2008, 47 (22) :10366-10371
[4]   Cobalt Oxalate Nanoribbons as Negative-Electrode Material for Lithium-Ion Batteries [J].
Jose Aragon, Maria ;
Leon, Bernardo ;
Perez Vicente, Carlos ;
Tirado, Jose L. ;
Chadwick, Alan V. ;
Berko, Aaron ;
Beh, See-Yuen .
CHEMISTRY OF MATERIALS, 2009, 21 (09) :1834-1840
[5]   On the use of transition metal oxysalts as conversion electrodes in lithium-ion batteries [J].
Jose Aragon, Maria ;
Leon, Bernardo ;
Perez Vicente, Carlos ;
Tirado, Jose L. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :823-827
[6]   Effect of particle size on lithium intercalation into α-Fe2O3 [J].
Larcher, D ;
Masquelier, C ;
Bonnin, D ;
Chabre, Y ;
Masson, V ;
Leriche, JB ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (01) :A133-A139
[7]   Oxygen vacancies and intermediate spin trivalent cobalt ions in lithium-overstoichiometric LiCoO2 [J].
Levasseur, S ;
Ménétrier, M ;
Shao-Horn, Y ;
Gautier, L ;
Audemer, A ;
Demazeau, G ;
Largeteau, A ;
Delmas, C .
CHEMISTRY OF MATERIALS, 2003, 15 (01) :348-354
[8]   High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications [J].
Taberna, L. ;
Mitra, S. ;
Poizot, P. ;
Simon, P. ;
Tarascon, J. -M. .
NATURE MATERIALS, 2006, 5 (07) :567-573
[9]   Cobalt oxide nanoparticles prepared from reverse micelles as high-capacity electrode materials for Li-ion cells [J].
Vidal-Abarca, C. ;
Lavela, P. ;
Tirado, J. L. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (11) :A198-A201
[10]  
Wang Z.L., 2002, HDB NANOPHASE NANOST, P1