Optimality criteria for regression models based on predicted variance

被引:28
作者
Dette, H [1 ]
O'Brien, TE
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] Ciba Geigy AG, CH-4002 Basel, Switzerland
关键词
Bayesian design; invariance; optimal design;
D O I
10.1093/biomet/86.1.93
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the context of nonlinear regression models, a new class of optimum design criteria is developed and illustrated. This new class, termed I-L-optimality, is analogous to Kiefer's Phi(k)-criterion but is based on predicted variance, whereas Kiefer's class is based on the eigenvalues of the information matrix; I-L-optimal designs are invariant with respect to different parameterisations of the model and contain G- and D-optimality as special cases. We provide a general equivalence theorem which is used to obtain and verify I-L-optimal designs. The method is illustrated by various examples.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 30 条
[11]   OPTIMUM ALLOCATION IN LINEAR REGRESSION THEORY [J].
ELFVING, G .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02) :255-262
[12]  
Fedorov V. V., 1988, OPTIMAL DESIGN ANAL, P327
[13]  
Fedorov VV., 1972, THEORY OPTIMAL EXPT
[14]  
HAINES LM, 1987, TECHNOMETRICS, V29, P439
[15]  
HERZBERG AM, 1972, BIOMETRIKA, V59, P551, DOI 10.2307/2334806
[16]  
KIEFER J, 1964, ANN I STAT MATH, V16, P79
[17]   GENERAL EQUIVALENCE THEORY FOR OPTIMUM DESIGNS (APPROXIMATE THEORY) [J].
KIEFER, J .
ANNALS OF STATISTICS, 1974, 2 (05) :849-879
[18]  
Kiefer J, 1960, Canadian Journal of Mathematics, V12, P363, DOI [DOI 10.4153/CJM-1960-030-4, 10.4153/CJM-1960-030-4]
[19]  
Lauter E., 1976, Mathematische Operationsforschung und Statistik, V7, P51, DOI 10.1080/02331887608801276
[20]  
LAUTER E, 1974, MATH OPER STAT, V5, P370