Monte Carlo estimation of Bayesian credible and HPD intervals

被引:845
作者
Chen, MH
Shao, QM
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Bayesian computation; Markov chain Monte Carlo; Monte Carlo methods; posterior distribution; simulation;
D O I
10.2307/1390921
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers how to estimate Bayesian credible and highest probability density (HPD) intervals for parameters of interest and provides a simple Monte Carlo approach to approximate these Bayesian intervals when a sample of the relevant parameters can be generated from their respective marginal posterior distribution using a Markov chain Monte Carlo (MCMC) sampling algorithm. We also develop a Monte Carlo method to compute HPD intervals for the parameters of interest from the desired posterior distribution using a sample from an importance sampling distribution. We apply our methodology to a Bayesian hierarchical model that has a posterior density containing analytically intractable integrals that depend on the (hyper) parameters. We further show that our methods are useful not only for calculating the HPD intervals for the parameters of interest but also for computing the HPD intervals for functions of the parameters. Necessary theory is developed and illustrative examples-including a simulation study-are given.
引用
收藏
页码:69 / 92
页数:24
相关论文
共 25 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]  
Berger JO., 1985, Statistical Decision Theory and Bayesian Analysis, V2, DOI DOI 10.1007/978-1-4757-4286-2
[3]  
Box G, 1992, BAYESIAN INFERENCE S, DOI DOI 10.1002/9781118033197.CH4
[5]   Monte Carlo methods for Bayesian analysis of constrained parameter problems [J].
Chen, MH ;
Shao, QM .
BIOMETRIKA, 1998, 85 (01) :73-87
[6]  
Chen MH, 1997, ANN STAT, V25, P1563
[7]  
CsoRGo M., 1993, Weighted approximations in probability and statistics
[8]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[9]   BAYESIAN-ANALYSIS OF CONSTRAINED PARAMETER AND TRUNCATED DATA PROBLEMS USING GIBBS SAMPLING [J].
GELFAND, AE ;
SMITH, AFM ;
LEE, TM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) :523-532
[10]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409