Dynamics and ligand-induced solvent accessibility changes in human retinoid X receptor homodimer determined by hydrogen deuterium exchange and mass spectrometry

被引:56
作者
Yan, XG
Broderick, D
Leid, ME
Schimerlik, MI
Deinzer, ML
机构
[1] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA
[3] Oregon State Univ, Dept Pharmaceut Sci, Corvallis, OR 97331 USA
关键词
D O I
10.1021/bi030183c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Receptors for retinoic acid act as ligand activated transcription factors. The three-dimensional structure of the retinoid X receptor (RXR) ligand binding domain has been determined, but little information is available concerning the properties of the protein in solution. Hydrogen/deuterium exchange followed by electrospray ionization mass spectrometry was used to probe the solution conformation of the recombinant human RXRalpha homodimer ligand binding domain in the presence and absence of 9-cis-retinoic acid (9-cis-RA). Within the experimental time domain (0.25-180 min), about 20 amide hydrogens showed decreased exchange rates in the presence of saturating concentrations of 9-cis-RA as compared to those found for the homodimer in the absence of ligand. Most of the amides were located in peptides derived from regions of the protein shown by the X-ray structure to interact with the bound ligand: the amino termini of helices 3 and 9, the two beta sheets, helix 8, the H8-H9 loop, and the carboxyl terminus of helix 11. Unexpectedly, protection was also observed in peptides derived from helices 7, 10, 11, and the H7-H8 and H10-H11 loops, regions that are not directly in contact with bound 9-cis-RA. These results suggest that the binding of ligand results in additional effects on the conformation or dynamics of the homodimer in solution as compared to those observed for the X-ray structure. Overall, the change in deuterium exchange induced by the binding of 9-cis-RA correlated reasonably well with changes in hydrogen bonding, residue depth, and/or solvent accessibility predicted from the crystal structure.
引用
收藏
页码:909 / 917
页数:9
相关论文
共 27 条
[1]   Amide H/2H exchange reveals communication between the cAMP and catalytic subunit-binding sites in the RIα subunit of protein kinase A [J].
Anand, GS ;
Hughes, CA ;
Jones, JM ;
Taylor, SS ;
Komives, EA .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 323 (02) :377-386
[2]   CRYSTAL-STRUCTURE OF THE LIGAND-BINDING DOMAIN OF THE HUMAN NUCLEAR RECEPTOR RXR-ALPHA [J].
BOURGUET, W ;
RUFF, M ;
CHAMBON, P ;
GRONEMEYER, H ;
MORAS, D .
NATURE, 1995, 375 (6530) :377-382
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Residue depth: a novel parameter for the analysis of protein structure and stability [J].
Chakravarty, S ;
Varadarajan, R .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (07) :723-732
[5]  
Chambon Pierre, 1994, Seminars in Cell Biology, V5, P115, DOI 10.1006/scel.1994.1015
[6]  
CHOTHIA C, 1975, J MOL BIOL, V105, P1
[7]   Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand:: 9-cis retinoic acid [J].
Egea, PF ;
Mitschler, A ;
Rochel, N ;
Ruff, M ;
Chambon, P ;
Moras, D .
EMBO JOURNAL, 2000, 19 (11) :2592-2601
[8]   Ligand-protein interactions in nuclear receptors of hormones [J].
Egea, PF ;
Klaholz, BP ;
Moras, D .
FEBS LETTERS, 2000, 476 (1-2) :62-67
[9]   Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR [J].
Egea, PF ;
Rochel, N ;
Birck, C ;
Vachette, P ;
Timmins, PA ;
Moras, D .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (02) :557-576
[10]   Investigating protein structure and dynamics by hydrogen exchange MS [J].
Engen, JR ;
Smith, DL .
ANALYTICAL CHEMISTRY, 2001, 73 (09) :256A-265A