Deterministic annealing for density estimation by multivariate normal mixtures

被引:21
作者
Kloppenburg, M
Tavan, P
机构
[1] Institut für Medizinische Optik, Ludwig-Maximilians-Universität München, München, D-80333
关键词
D O I
10.1103/PhysRevE.55.R2089
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.
引用
收藏
页码:R2089 / R2092
页数:4
相关论文
共 19 条