GCS of a class of chaotic dynamic systems

被引:10
作者
Park, JH [1 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, Robust Control & Nonlinear Dynam Lab, Kyongsan 712749, South Korea
关键词
D O I
10.1016/j.chaos.2005.03.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies a guaranteed cost synchronization (GCS) problem for a class of chaotic systems. Attention is focused on the design of state feedback controllers such that the resulting closed-loop error system is asymptotically stable and an adequate level of performance is also guaranteed. Using the Lyapunov method and LMI (linear matrix inequality) technique, two criteria for the existence of the controller for GCS are derived in terms of LMIs. To show the effectiveness of the proposed method, GCS problem of Genesio system verified by a numerical example. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1429 / 1435
页数:7
相关论文
共 21 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]  
[Anonymous], 1994, LINEAR MATRIX INEQUA
[3]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[4]   ADAPTIVE GUARANTEED COST CONTROL OF SYSTEMS WITH UNCERTAIN PARAMETERS [J].
CHANG, SSL ;
PENG, TKC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (04) :474-&
[5]  
Chen G., 1998, CHAOS ORDER METHODOL
[6]   Controlling and synchronizing chaotic Genesio system via nonlinear feedback control [J].
Chen, MY ;
Han, ZZ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :709-716
[7]  
GAHINET P, 1995, MATHWORKS
[8]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548
[9]   Synchronization of chaotic systems via nonlinear control [J].
Huang, LL ;
Feng, RP ;
Wang, M .
PHYSICS LETTERS A, 2004, 320 (04) :271-275
[10]   Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems [J].
Li, D ;
Lu, JA ;
Wu, XQ .
CHAOS SOLITONS & FRACTALS, 2005, 23 (01) :79-85