The deubiquitylation activity of Ubp8 is dependent upon Scf11 and its association with the SAGA complex

被引:132
作者
Lee, KK [1 ]
Florens, L [1 ]
Swanson, SK [1 ]
Washburn, MP [1 ]
Workman, JL [1 ]
机构
[1] Stowers Inst Med Res, Kansas City, MO 64110 USA
关键词
D O I
10.1128/MCB.25.3.1173-1182.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Covalent modifications of the histone tails and the cross talk between these modifications are hallmark features of gene regulation. The SAGA histone acetyltransferase complex is one of the most well-characterized complexes involved in these covalent modifications. The recent finding that the removal of the ubiquitin group from H2B is performed by a component of SAGA, Ubp8, is intriguing as it assigns two posttranslation modification processes to one complex. In this work, we characterize the association of Ubp8 with SAGA and the effect that acetylation and deubiquitylation have on one another in vitro and in vivo. We found not only that Ubp8 is a part of the SAGA complex, but also that its deubiquitylation activity requires Ubp8's association with SAGA. Furthermore, we found that the Ubp8 association with SAGA requires SGFl1 and that this requirement is reciprocal. We also found that the acetylation and deubiquiqlation activities of SAGA are independent of one another. However, we found that preacetylating histone H2B inhibited subsequent deubiquitylation. Additionally. we found that increasing the ulliquitylation state of H2B inhibited the expression of the ARG1 gene. whose repression was previously shown to require the RAD6 ubiquitin ligase. Taken together, these data indicate that the expression of some genes, including ARG1, is regulated by a balance of histone H2B ubiquitylation in the cell.
引用
收藏
页码:1173 / 1182
页数:10
相关论文
共 33 条
[1]   Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae [J].
Amerik, AY ;
Li, SJ ;
Hochstrasser, M .
BIOLOGICAL CHEMISTRY, 2000, 381 (9-10) :981-992
[2]   Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation [J].
Balasubramanian, R ;
Pray-Grant, MG ;
Selleck, W ;
Grant, PA ;
Tan, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7989-7995
[3]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[4]   The diverse functions of histone acetyltransferase complexes [J].
Carrozza, MJ ;
Utley, RT ;
Workman, JL ;
Côté, J .
TRENDS IN GENETICS, 2003, 19 (06) :321-329
[5]   Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription [J].
Daniel, JA ;
Torok, MS ;
Sun, ZW ;
Schieltz, D ;
Allis, CD ;
Yates, JR ;
Grant, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (03) :1867-1871
[6]   Purification and characterization of the cytoplasmic histone acetyltransferase B of maize embryos [J].
Eberharter, A ;
Lechner, T ;
GoralikSchramel, M ;
Loidl, P .
FEBS LETTERS, 1996, 386 (01) :75-81
[7]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[8]   Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (Spt/Ada) complex [J].
Grant, PA ;
Duggan, L ;
Cote, J ;
Roberts, SM ;
Brownell, JE ;
Candau, R ;
Ohba, R ;
OwenHughes, T ;
Allis, CD ;
Winston, F ;
Berger, SL ;
Workman, JL .
GENES & DEVELOPMENT, 1997, 11 (13) :1640-1650
[9]   A subset of TAFIIs are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation [J].
Grant, PA ;
Schieltz, D ;
Pray-Grant, MG ;
Steger, DJ ;
Reese, JC ;
Yates, JR ;
Workman, JL .
CELL, 1998, 94 (01) :45-53
[10]   Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8 [J].
Henry, KW ;
Wyce, A ;
Lo, WS ;
Duggan, LJ ;
Emre, NCT ;
Kao, CF ;
Pillus, L ;
Shilatifard, A ;
Osley, MA ;
Berger, SL .
GENES & DEVELOPMENT, 2003, 17 (21) :2648-2663