Decoherence suppression for oscillator-assisted geometric quantum gates via symmetrization

被引:4
作者
Cen, LX
Zanardi, P
机构
[1] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevA.71.060307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a symmetrization procedure to beat decoherence for oscillator-assisted quantum gate operations. The enacted symmetry is related to the global geometric features of qubits transformation based on ancillary oscillator modes, e.g., phonons in an ion-trap system. It is shown that the devised multicircuit symmetrized evolution endows the system with a twofold resilience against decoherence: insensitivity to thermal fluctuations and quantum dissipation.
引用
收藏
页数:4
相关论文
共 32 条
[1]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[2]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[3]   Geometric manipulation of trapped ions for quantum computation [J].
Duan, LM ;
Cirac, JI ;
Zoller, P .
SCIENCE, 2001, 292 (5522) :1695-1697
[4]   Preserving coherence in quantum computation by pairing quantum bits [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1953-1956
[5]   Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing -: art. no. 157901 [J].
García-Ripoll, JJ ;
Zoller, P ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2003, 91 (15) :157901-157901
[6]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[7]   Fast quantum gates for cold trapped ions [J].
Jonathan, D ;
Plenio, MB ;
Knight, PL .
PHYSICAL REVIEW A, 2000, 62 (04) :10
[8]   Geometric quantum computation using nuclear magnetic resonance [J].
Jones, JA ;
Vedral, V ;
Ekert, A ;
Castagnoli, G .
NATURE, 2000, 403 (6772) :869-871
[9]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[10]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528