Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching

被引:25
作者
Chuang, LC [1 ]
Yew, PR [1 ]
机构
[1] Univ Texas, Hlth Sci Ctr, Dept Mol Med, Inst Biotechnol, San Antonio, TX 78245 USA
关键词
D O I
10.1074/jbc.M506429200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Xenopus cyclin- dependent kinase ( CDK) inhibitor, p27(Xic1) ( Xic1), binds to CDK2- cyclins and proliferating cell nuclear antigen ( PCNA), inhibits DNA synthesis in Xenopus extracts, and is targeted for ubiquitin- mediated proteolysis. Previous studies suggest that Xic1 ubiquitination and degradation are coupled to the initiation of DNA replication, but the precise timing and molecular mechanism of Xic1 proteolysis has not been determined. Here we demonstrate that Xic1 proteolysis is temporally restricted to late replication initiation following the requirements for DNA polymerase alpha- primase, replication factor C, and PCNA. Our studies also indicate that Xic1 degradation is absolutely dependent upon the binding of Xic1 to PCNA in both Xenopus egg and gastrulation stage extracts. Additionally, extracts depleted of PCNA do not support Xic1 proteolysis. Importantly, while the addition of recombinant wild- type PCNA alone restores Xic1 degradation, the addition of a PCNA mutant defective for trimer formation does not restore Xic1 proteolysis in PCNA- depleted extracts, suggesting Xic1 proteolysis requires both PCNA binding to Xic1 and the ability of PCNA to be loaded onto primed DNA by replication factor C. Taken together, our studies suggest that Xic1 is targeted for ubiquitination and degradation during DNA polymerase switching through its interaction with PCNA at a site of initiation.
引用
收藏
页码:35299 / 35309
页数:11
相关论文
共 118 条
[1]   Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation [J].
Bloom, J ;
Amador, V ;
Bartolini, F ;
DeMartino, G ;
Pagano, M .
CELL, 2003, 115 (01) :71-82
[2]   Cell cycle - A new check on issuing the licence [J].
Blow, JJ ;
Tada, S .
NATURE, 2000, 404 (6778) :560-561
[3]   INITIATION OF DNA-REPLICATION IN NUCLEI AND PURIFIED DNA BY A CELL-FREE-EXTRACT OF XENOPUS EGGS [J].
BLOW, JJ ;
LASKEY, RA .
CELL, 1986, 47 (04) :577-587
[4]  
Bogan JA, 2000, J CELL PHYSIOL, V184, P139, DOI 10.1002/1097-4652(200008)184:2<139::AID-JCP1>3.0.CO
[5]  
2-8
[6]   CDNAS ENCODING THE LARGE SUBUNIT OF HUMAN REPLICATION FACTOR-C [J].
BUNZ, F ;
KOBAYASHI, R ;
STILLMAN, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11014-11018
[7]   REVERSAL OF TERMINAL DIFFERENTIATION AND CONTROL OF DNA-REPLICATION - CYCLIN-A AND CDK2 SPECIFICALLY LOCALIZE AT SUBNUCLEAR SITES OF DNA-REPLICATION [J].
CARDOSO, MC ;
LEONHARDT, H ;
NADALGINARD, B .
CELL, 1993, 74 (06) :979-992
[8]   Role for a Xenopus Orc2-related protein in controlling DNA replication [J].
Carpenter, PB ;
Mueller, PR ;
Dunphy, WG .
NATURE, 1996, 379 (6563) :357-360
[9]   Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21 [J].
Cayrol, C ;
Ducommun, B .
ONCOGENE, 1998, 17 (19) :2437-2444
[10]   SEPARATE DOMAINS OF P21 INVOLVED IN THE INHIBITION OF CDK KINASE AND PCNA [J].
CHEN, JJ ;
JACKSON, PK ;
KIRSCHNER, MW ;
DUTTA, A .
NATURE, 1995, 374 (6520) :386-388