Fast EM-type implementations for mixed effects models

被引:76
作者
Meng, XL
van Dyk, D
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Harvard Univ, Cambridge, MA 02138 USA
关键词
data augmentation; incomplete data; missing data; random effects models; rate of convergence; restricted maximum likelihood; variance components models;
D O I
10.1111/1467-9868.00140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The mixed effects model, in its various forms, is a common model in applied statistics. A useful strategy for fitting this model implements EM-type algorithms by treating the random effects as missing data. Such implementations, however, car, be painfully slow when the variances of the random effects are small relative to the residual variance. In this paper, we apply the 'working parameter' approach to derive alternative EM-type implementations for fitting mixed effects models, which we show empirically can be hundreds of times faster than the common EM-type implementations. In our limited simulations, they also compare well with the routines in S-PLUS(R) and Stata(R) in terms of both speed and reliability. The central idea of the working parameter approach is to search for efficient data augmentation schemes for implementing the EM algorithm by minimizing the augmented information over the working parameter, and in the mixed effects setting this leads to a transfer of the mixed effects variances into the regression slope parameters. We also describe a variation for computing the restricted maximum likelihood estimate and an adaptive algorithm that takes advantage of both the standard and the alternative EM-type implementations.
引用
收藏
页码:559 / 578
页数:20
相关论文
共 24 条
[1]  
ANDERSON DA, 1985, J R STAT SOC B, V47, P203
[2]  
[Anonymous], P STAT COMP SECT AM
[3]  
BEATON AE, 1964, RES B ED TESTING SER
[4]  
Callanan T.P., 1991, J STAT COMPUT SIM, V38, P239, DOI DOI 10.1080/00949659108811332
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
DEMPSTER AP, 1984, APPL STAT-J ROY ST C, V33, P203
[7]  
FOULLEY JL, 1995, GENET SEL EVOL, V27, P211, DOI 10.1051/gse:19950302
[8]   EFFICIENT PARAMETRIZATIONS FOR NORMAL LINEAR MIXED MODELS [J].
GELFAND, AE ;
SAHU, SK ;
CARLIN, BP .
BIOMETRIKA, 1995, 82 (03) :479-488
[9]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411