Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia

被引:329
作者
Calabrese, V
Lodi, R
Tonon, C
D'Agata, V
Sapienza, M
Scapagnini, G
Mangiameli, A
Pennisi, G
Stella, AMG
Butterfield, DA
机构
[1] Univ Catania, Fac Med, Dept Chem, Sect Biochem & Mol Biol, I-95100 Catania, Italy
[2] Univ Bologna, Policlin S Orsola Malpighi, Dept Clin Med & Radiol, I-40138 Bologna, Italy
[3] Univ Catania, Fac Med, Dept Internal Med, I-95100 Catania, Italy
[4] Univ Catania, Fac Med, Dept Neurosci, I-95100 Catania, Italy
[5] Univ Kentucky, Ctr Membrane Sci, Dept Chem, Lexington, KY 40506 USA
[6] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40506 USA
基金
英国惠康基金;
关键词
oxidative stress; FRDA pathogenesis; MR spectroscopy; cell stress response;
D O I
10.1016/j.jns.2005.03.012
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia (FRDA), multiple sclerosis and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) associated with mitochondrial dysfunction. The mitochondrial genome may play an essential role in the pathogenesis of these diseases, and evidence for mitochondria being a site of damage in neurodegenerative disorders is based in part on observed decreases in the respiratory chain complex activities in Parkinson's, Alzheimer's, and Huntington's disease. Such defects in respiratory complex activities, possibly associated with oxidant/antioxidant imbalance, are thought to underlie defects in energy metabolism and induce cellular degeneration. The precise sequence of events in FRDA pathogenesis is uncertain. The impaired intramitochondrial metabolism with increased free iron levels and a defective mitochondrial respiratory chain, associated with increased free radical generation and oxidative damage, may be considered possible mechanisms that compromise cell viability. Recent evidence suggests that frataxin might detoxify ROS via activation of glutathione peroxidase and elevation of thiols, and in addition, that decreased expression of frataxin protein is associated with FRDA. Many approaches have been undertaken to understand FRDA, but the heterogeneity of the etiologic factors makes it difficult to define the clinically most important factor determining the onset and progression of the disease. However, increasing evidence indicates that factors such as oxidative stress and disturbed protein metabolism and their interaction in a vicious cycle are central to FRDA pathogenesis. Brains of FRDA patients undergo many changes, such as disruption of protein synthesis and degradation, classically associated with the heat shock response, which is one form of stress response. Heat shock proteins are proteins serving as molecular chaperones involved in the protection of cells from various forms of stress. In the central nervous system, beat shock protein (HSP) synthesis is induced not only after hyperthermia, but also following alterations in the intracellular redox environment. The major neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Huntington's disease (HD) and FRDA are all associated with the presence of abnormal proteins. Among the various HSPs, HSP32, also known as heme oxygenase I (HO-1), has received considerable attention, as it has been recently demonstrated that HO-I induction, by generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. This may open up new perspectives in medicine, as molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. In particular, manipulation of endogenous cellular defense mechanisms, such as the heat shock response, through nutritional antioxidants, pharmacological compounds or gene transduction, may represent an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:145 / 162
页数:18
相关论文
共 186 条
[1]   Iron-dependent self assembly of recombinant yeast frataxin: Implications for Friedreich ataxia [J].
Adamec, J ;
Rusnak, F ;
Owen, WG ;
Naylor, S ;
Benson, LM ;
Gacy, AM ;
Isaya, G .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 67 (03) :549-562
[2]   A structural approach to understanding the iron-binding properties of phylogenetically different frataxins [J].
Adinolfi, S ;
Trifuoggi, M ;
Politou, AS ;
Martin, S ;
Pastore, A .
HUMAN MOLECULAR GENETICS, 2002, 11 (16) :1865-1877
[3]   Cardiomyopathies in disorders of oxidative metabolism [J].
Antozzi, C ;
Zeviani, M .
CARDIOVASCULAR RESEARCH, 1997, 35 (02) :184-199
[4]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712
[5]   Depletion of brain glutathione results in a decrease of glutathione reductase activity; An enzyme susceptible to oxidative damage [J].
Barker, JE ;
Heales, SJR ;
Cassidy, A ;
Bolanos, JP ;
Land, JM ;
Clark, JB .
BRAIN RESEARCH, 1996, 716 (1-2) :118-122
[6]   Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: Implications for neuronal astrocytic trafficking and neurodegeneration [J].
Barker, JE ;
Bolanos, JP ;
Land, JM ;
Clark, JB ;
Heales, SJR .
DEVELOPMENTAL NEUROSCIENCE, 1996, 18 (5-6) :391-396
[7]   AGING, ENERGY, AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISEASES [J].
BEAL, MF .
ANNALS OF NEUROLOGY, 1995, 38 (03) :357-366
[8]   Mitochondrial aging: Open questions [J].
Beckman, KB ;
Ames, BN .
TOWARDS PROLONGATION OF THE HEALTHY LIFE SPAN: PRACTICAL APPROACHES TO INTERVENTION, 1998, 854 :118-127
[9]   IMMUNOCYTOCHEMICAL ANALYSIS OF TUMOR-NECROSIS-FACTOR AND ITS RECEPTORS IN PARKINSONS-DISEASE [J].
BOKA, G ;
ANGLADE, P ;
WALLACH, D ;
JAVOYAGID, F ;
AGID, Y ;
HIRSCH, EC .
NEUROSCIENCE LETTERS, 1994, 172 (1-2) :151-154
[10]  
Bolanos JP, 1997, J NEUROCHEM, V68, P2227