Heme impairs allosterically drug binding to human serum albumin Sudlow's site I

被引:65
作者
Ascenzi, P
Bocedi, A
Notari, S
Menegatti, E
Fasano, M
机构
[1] Natl Inst Infect Dis, IRCCS Lazzaro Spallanzani, I-00149 Rome, Italy
[2] Univ Ferrara, Dept Pharmaceut Sci, I-44100 Ferrara, Italy
[3] Univ Insubria, Ctr Neurosci, Dept Struct & Funct Biol, I-21052 Busto Arsizio, VA, Italy
关键词
human serum albumin; ferric heme-human serum albumin; drugs; ferric heme; ligand binding; allostery;
D O I
10.1016/j.bbrc.2005.06.127
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human serum albumin (HSA), the most prominent protein in plasma, is best known for its exceptional ligand (e.g., heme and drugs) binding capacity. Here, the binding of chlorpropamide, digitoxin, furosemide, indomethacin, phenylbutazone, sulfisoxazole, and tolbutamide to HSA and ferric heme-HSA is reported. Moreover, ferric heme binding to HSA in the absence and presence of drugs has been investigated. Values of the association equilibrium constant for drug binding to Sudlow's site I of ferric heme-HSA (ranging between 1.7 x 10(3) and 1.6 x 10(5) M-1) are lower by one order of magnitude than those for drug binding to ferric heme-free HSA (ranging between 1.9 X 10(4) and 1.8 x 10(6) M-1). According to linked functions, the value of the association equilibrium constant for heme binding to HSA decreases from 7.8 X 10(7) M-1, in the absence of drugs to 7.0 x 10(6) M-1, in the presence of drugs. These findings represent a clear-cut evidence for the allosteric inhibition of drug binding to HSA Sudlow's site I by the heme. According to linked functions, drugs impair allosterically heme binding to HSA. These results appear to be relevant in the drug therapy and management. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:481 / 486
页数:6
相关论文
共 44 条
[31]  
Peters T. J., 1996, ALL ALBUMIN BIOCH GE
[32]   A dynamic model for bilirubin binding to human serum albumin [J].
Petersen, CE ;
Ha, CE ;
Harohalli, K ;
Feix, JB ;
Bhagavan, NV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (28) :20985-20995
[33]   Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia [J].
Petitpas, I ;
Petersen, CE ;
Ha, CE ;
Bhattacharya, AA ;
Zunszain, PA ;
Ghuman, J ;
Bhagavan, NV ;
Curry, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) :6440-6445
[34]   Crystal structure analysis of warfarin binding to human serum albumin - Anatomy of drug site I [J].
Petitpas, I ;
Bhattacharya, AA ;
Twine, S ;
East, M ;
Curry, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (25) :22804-22809
[35]   Esterase-like activity of serum albumin: Characterization of its structural chemistry using p-nitrophenyl esters as substrates [J].
Sakurai, Y ;
Ma, SF ;
Watanabe, H ;
Yamaotsu, N ;
Hirono, S ;
Kurono, Y ;
Kragh-Hansen, U ;
Otagiri, M .
PHARMACEUTICAL RESEARCH, 2004, 21 (02) :285-292
[36]  
SUDLOW G, 1975, MOL PHARMACOL, V11, P824
[37]   Crystal structure of human serum albumin at 2.5 Å resolution [J].
Sugio, S ;
Kashima, A ;
Mochizuki, S ;
Noda, M ;
Kobayashi, K .
PROTEIN ENGINEERING, 1999, 12 (06) :439-446
[38]   Competition of drugs to serum albumin in combination therapy [J].
Sulkowska, A ;
Bojko, B ;
Równicka, J ;
Sulkowski, W .
BIOPOLYMERS, 2004, 74 (03) :256-262
[39]   BINDING OF DRUGS BY ALBUMIN AND PLASMA-PROTEIN [J].
VALLNER, JJ .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1977, 66 (04) :447-465
[40]   The atomic structure of human methemalbumin at 1.9 Å [J].
Wardell, M ;
Wang, ZM ;
Ho, JX ;
Robert, J ;
Ruker, F ;
Ruble, J ;
Carter, DC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 291 (04) :813-819