Electronic properties of silicon nanowires

被引:146
作者
Zheng, Y [1 ]
Rivas, C
Lake, R
Alam, K
Boykin, TB
Klimeck, G
机构
[1] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[2] Univ Texas, Eric Jonson Sch Engn, Richardson, TX 75083 USA
[3] Univ Alabama, Huntsville, AL 35899 USA
[4] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[5] CALTECH, Jet Propuls Lab, Pasadena, CA 91109 USA
基金
美国国家科学基金会;
关键词
nanowires (NWs); silicon nanowires (SiNWs);
D O I
10.1109/TED.2005.848077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electronic structure and transmission coefficients of Si nanowires are calculated in a sp(3)d(5)s(*) model. The effect of wire thickness on the bandgap, conduction valley splitting, hole band splitting, effective masses, and transmission is demonstrated. Results from the sp(3)d(5)s(*) model are compared to those from a single-band effective mass model to assess the validity of the singleband effective mass model in narrow Si nanowires. The one-dimensional Brillouin zone of a Si nanowire is direct gap. The conduction band minimum can split into a quartet of energies although often two of the energies are degenerate. Conduction band valley splitting reduces the averaged mobility mass along the axis of the wire, but quantum confinement increases the transverse mass of the conduction band edge. Quantum confinement results in a large increase in the hole masses of the two highest valence bands. A single-band model performs reasonably well at calculating the effective band edges for wires as small as 1.54-nm square. A wire-substrate interface can be viewed as a heterojunction with band offsets resulting in reflection in the transmission.
引用
收藏
页码:1097 / 1103
页数:7
相关论文
共 50 条
[1]   Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J].
Barrelet, CJ ;
Wu, Y ;
Bell, DC ;
Lieber, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) :11498-11499
[2]   TRANSMISSION RESONANCES AND ZEROS IN MULTIBAND MODELS [J].
BOWEN, RC ;
FRENSLEY, WR ;
KLIMECK, G ;
LAKE, RK .
PHYSICAL REVIEW B, 1995, 52 (04) :2754-2765
[3]   Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs [J].
Boykin, TB .
PHYSICAL REVIEW B, 1996, 54 (11) :8107-8115
[4]   Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization -: art. no. 115201 [J].
Boykin, TB ;
Klimeck, G ;
Oyafuso, F .
PHYSICAL REVIEW B, 2004, 69 (11)
[5]   Valley splitting in strained silicon quantum wells [J].
Boykin, TB ;
Klimeck, G ;
Eriksson, MA ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
APPLIED PHYSICS LETTERS, 2004, 84 (01) :115-117
[6]   OPTICAL-PROPERTIES OF POROUS SILICON - A 1ST-PRINCIPLES STUDY [J].
BUDA, F ;
KOHANOFF, J ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1272-1275
[7]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[8]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[9]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[10]   Diameter-controlled synthesis of single-crystal silicon nanowires [J].
Cui, Y ;
Lauhon, LJ ;
Gudiksen, MS ;
Wang, JF ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2001, 78 (15) :2214-2216