Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films

被引:239
作者
Nagpal, Prashant [1 ]
Klimov, Victor I. [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Adv Solar Photophys, C PCS, Div Chem, Los Alamos, NM 87545 USA
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
关键词
QUANTUM-DOT PHOTODETECTORS; FIELD-EFFECT TRANSISTORS; LIGHT-EMITTING-DIODES; SOLAR-CELLS; ELECTRICAL-PROPERTIES; PBSE; SILICON; PHOTOVOLTAICS; GENERATION; STABILITY;
D O I
10.1038/ncomms1492
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive midgap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Electronic states and optical properties of PbSe nanorods and nanowires [J].
Bartnik, A. C. ;
Efros, Al. L. ;
Koh, W. -K. ;
Murray, C. B. ;
Wise, F. W. .
PHYSICAL REVIEW B, 2010, 82 (19)
[2]   High-performance crosslinked colloidal quantum-dot light-emitting diodes [J].
Cho, Kyung-Sang ;
Lee, Eun Kyung ;
Joo, Won-Jae ;
Jang, Eunjoo ;
Kim, Tae-Ho ;
Lee, Sang Jin ;
Kwon, Soon-Jae ;
Han, Jai Yong ;
Kim, Byung-Ki ;
Choi, Byoung Lyong ;
Kim, Jong Min .
NATURE PHOTONICS, 2009, 3 (06) :341-345
[3]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[4]   Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots [J].
Ellingson, RJ ;
Beard, MC ;
Johnson, JC ;
Yu, PR ;
Micic, OI ;
Nozik, AJ ;
Shabaev, A ;
Efros, AL .
NANO LETTERS, 2005, 5 (05) :865-871
[5]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[6]   Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution [J].
Hines, MA ;
Scholes, GD .
ADVANCED MATERIALS, 2003, 15 (21) :1844-1849
[7]   Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution [J].
Holman, Zachary C. ;
Liu, Chin-Yi ;
Kortshagen, Uwe R. .
NANO LETTERS, 2010, 10 (07) :2661-2666
[8]   Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters [J].
Kamat, Prashant V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (48) :18737-18753
[9]   Electronic structure and optical properties of PbS and PbSe quantum dots [J].
Kang, I ;
Wise, FW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (07) :1632-1646
[10]   High Carrier Densities Achieved at Low Voltages in Ambipolar PbSe Nanocrystal Thin-Film Transistors [J].
Kang, Moon Sung ;
Lee, Jiyoul ;
Norris, David J. ;
Frisbie, C. Daniel .
NANO LETTERS, 2009, 9 (11) :3848-3852