共 67 条
Running on a treadmill: dynamic inhibition of APC/C by the spindle checkpoint
被引:16
作者:
Diaz-Martinez, Laura A.
[1
]
Yu, Hongtao
[1
]
机构:
[1] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA
来源:
关键词:
D O I:
10.1186/1747-1028-2-23
中图分类号:
Q2 [细胞生物学];
学科分类号:
071009 ;
090102 ;
摘要:
During mitosis, the genome duplicated during S-phase is synchronously and accurately segregated to the two daughter cells. The spindle checkpoint prevents premature sister-chromatid separation and mitotic exit. The anaphase-promoting complex/cyclosome (APC/C) is a key target of the spindle checkpoint. Upon checkpoint activation, the mitotic checkpoint complex (MCC) containing Mad2, Bub3, Mad3/BubR1 and Cdc20 inhibits APC/C. Two independent studies in budding yeast have now shed light on the mechanism by which MCC inhibits APC/C. These studies indicate that Mad3 binds to the mitotic activator of APC/C Cdc20 using peptide motifs commonly found in APC/C substrates and thus competes with APC/C substrates for APC/C-Cdc20 binding. In addition, Mad3 binding to APC/C-Cdc20 induces Cdc20 ubiquitination by APC/C, leading to the dissociation of MCC. Meanwhile, two other studies have shown that a deubiquitinating enzyme is required for the spindle checkpoint whereas APC/C-dependent ubiquitination is needed for checkpoint inactivation. Collectively, these studies suggest a dynamic model for APC/C-Cdc20 regulation by MCC in which APC/C-and Mad3-dependent ubiquitination of Cdc20 constitutes a self-regulated switch that rapidly inactivates the spindle checkpoint upon correct chromosome attachment.
引用
收藏
页数:6
相关论文