Knotted and linked phase singularities in monochromatic waves

被引:167
作者
Berry, MV [1 ]
Dennis, MR [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2001年 / 457卷 / 2013期
关键词
phase; singularities; dislocations; knots; links; paraxiality;
D O I
10.1098/rspa.2001.0826
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exact solutions of the Helmholtz equation are constructed, possessing wavefront dislocation lines (phase singularities) in the form of knots or links where the wave function vanishes ('knotted nothings'). The construction proceeds by making a nongeneric structure with a strength n dislocation loop threaded by a strength m dislocation line, and then perturbing this. In the resulting unfolded (stable) structure, the dislocation loop becomes an (in, it) torus knot if in and n are coprime, and N linked rings or knots if rn and n have a common factor N: the loop or rings are threaded by an m-stranded helix. In our explicit implementation, the wave is a superposition of Bessel beams,, accessible to experiment. Paraxially, the construction fails.
引用
收藏
页码:2251 / 2263
页数:13
相关论文
共 25 条
[1]  
Adams C. C., 1994, KNOT BOOK
[2]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[3]   Knotted zeros in the quantum states of hydrogen [J].
Berry, M .
FOUNDATIONS OF PHYSICS, 2001, 31 (04) :659-667
[4]  
Berry M., 1981, P HOUCHES SUMMER SCH, V35, P453
[5]   EVANESCENT AND REAL WAVES IN QUANTUM BILLIARDS AND GAUSSIAN BEAMS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :L391-L398
[6]   Phase singularities in isotropic random waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2059-2079
[7]  
Berry MV, 1998, J MOD OPTIC, V45, P1845, DOI 10.1080/09500349808231706
[8]  
Cromwell P, 1998, MATH INTELL, V20, P53
[9]   DIFFRACTION-FREE BEAMS [J].
DURNIN, J ;
MICELI, JJ ;
EBERLY, JH .
PHYSICAL REVIEW LETTERS, 1987, 58 (15) :1499-1501
[10]   EXACT-SOLUTIONS FOR NONDIFFRACTING BEAMS .1. THE SCALAR THEORY [J].
DURNIN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04) :651-654