Identification of highly fucosylated N-linked oligosaccharides from the human parotid gland

被引:50
作者
Guile, GR [1 ]
Harvey, DJ [1 ]
O'Donnell, N [1 ]
Powell, AK [1 ]
Hunter, AP [1 ]
Zamze, S [1 ]
Fernandes, DL [1 ]
Dwek, RA [1 ]
Wing, DR [1 ]
机构
[1] Oxford Gycobiol Inst, Dept Biochem, Oxford OX1 3QU, England
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1998年 / 258卷 / 02期
关键词
parotid gland; oligosaccharide; matrix-assisted laser-desorption/ionization MS; HPLC; fucose;
D O I
10.1046/j.1432-1327.1998.2580623.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The glycosylation of a number of constituents of human saliva is known to modify its biological roles, such as its lubricating properties and binding of microbial flora. Gillece-Castro et al. [Gillece-Castro, B. L., Prakobphol, A., Burlingame, A. L., Leffler, H. & Fisher, S. J. (1991) J. Biol. Chem. 266, 17358-17368] have proposed that the major glycan on the salivary proline-rich glycoproteins is a trifucosylated biantennary sugar with one difucosylated and one unfucosylated antenna. Furthermore, they proposed that the non-fucosylated antenna mediated adherence to a peridontal pathogen, Fusobacterium nucleatum. The detailed structures and roles of other highly fucosylated glycans that co-exist in the parotid gland are not fully known. In view of the influence of outer-arm fucosylation on carbohydrate recognition processes in general, this paper reports the use of a combination of HPLC (normal and reversed phase), matrix-assisted laser-desorption/ionisation (MALDI) mass spectrometry and exoglycosidase digestions to dissect the detailed structures of the most abundant of these polyfucosylated glycans. For measurement of reversed-phase HPLC retention times, new calibration units were used which paralleled the glucose units used for normal-phase HPLC. These differed in that the difference in retention times were compared with those derived from a ladder of 2-aminobenzamide-labelled arabinose oligomers instead of the corresponding oligomers from partially hydrolysed dextran. Over sixty neutral sugars were identified from the parotid gland and many of these were additionally found substituted with sialic acid (both alpha 2-3-linked and alpha 2-6-linked) and sulphate. These glycans were mainly bi- and tri-antennary sugars with up to five and seven fucose residues respectively, containing fucose alpha 1-3-linked to the outer-arm GlcNAc residues and alpha 1-2-linked to the galactose. All fucosylated structures contained a core (alpha 1-6-linked) fucose. The detailed structure of the trifucosylated biantennary glycan was confirmed, together with the structures of another 12 fucosylated biantennary glycans. Smaller amounts of hybrid and tetraan-tennary structures were also found and bisected glycans were shown to be constituents of parotid glycoproteins for the first time. Acidic glycans were mainly substituted with sialic acid. Most were monosialylated as the presence of fucose on the antennae was found to suppress the addition of extra sialic acid moieties. The possible functional significance of highly fucosylated N-glycans is discussed in relation to their modification of the availability of other non-reducing terminal monosaccharides for recognition processes.
引用
收藏
页码:623 / 656
页数:34
相关论文
共 33 条
  • [1] THE BETA-1-]2-D-XYLOSE AND ALPHA-1-]3-L-FUCOSE SUBSTITUTED N-LINKED OLIGOSACCHARIDES FROM ERYTHRINA-CRISTAGALLI LECTIN - ISOLATION, CHARACTERIZATION AND COMPARISON WITH OTHER LEGUME LECTINS
    ASHFORD, D
    DWEK, RA
    WELPLY, JK
    AMATAYAKUL, S
    HOMANS, SW
    LIS, H
    TAYLOR, GN
    SHARON, N
    RADEMACHER, TW
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 166 (02): : 311 - 320
  • [2] A COMBINED MAGNETIC SECTOR-TIME-OF-FLIGHT MASS-SPECTROMETER FOR STRUCTURAL DETERMINATION STUDIES BY TANDEM MASS-SPECTROMETRY
    BATEMAN, RH
    GREEN, MR
    SCOTT, G
    CLAYTON, E
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1995, 9 (13) : 1227 - 1233
  • [3] HYDRAZINOLYSIS-N-REACETYLATION OF GLYCOPEPTIDES AND GLYCOPROTEINS - MODEL STUDIES USING 2-ACETAMIDO-1-N-(L-ASPART-4-OYL)-2-DEOXY-BETA-D-GLUCOPYRANOSYLAMINE
    BENDIAK, B
    CUMMING, DA
    [J]. CARBOHYDRATE RESEARCH, 1985, 144 (01) : 1 - 12
  • [4] BENNICK A, 1982, MOL CELL BIOCHEM, V45, P83
  • [5] USE OF THE PHOTOAFFINITY CROSS-LINKING AGENT N-HYDROXYSUCCINIMIDYL-4-AZIDOSALICYLIC ACID TO CHARACTERIZE SALIVARY-GLYCOPROTEIN BACTERIAL INTERACTIONS
    BERGEY, EJ
    LEVINE, MJ
    REDDY, MS
    BRADWAY, SD
    ALHASHIMI, I
    [J]. BIOCHEMICAL JOURNAL, 1986, 234 (01) : 43 - 48
  • [6] NONSELECTIVE AND EFFICIENT FLUORESCENT LABELING OF GLYCANS USING 2-AMINO BENZAMIDE AND ANTHRANILIC ACID
    BIGGE, JC
    PATEL, TP
    BRUCE, JA
    GOULDING, PN
    CHARLES, SM
    PAREKH, RB
    [J]. ANALYTICAL BIOCHEMISTRY, 1995, 230 (02) : 229 - 238
  • [7] BOERSMA A, 1981, CARBOHYD RES, V95, P227, DOI 10.1016/S0008-6215(00)85579-2
  • [8] MATRIX-ASSISTED LASER-DESORPTION MASS-SPECTROMETRY ON A MAGNETIC-SECTOR INSTRUMENT FITTED WITH AN ARRAY DETECTOR
    BORDOLI, RS
    HOWES, K
    VICKERS, RG
    BATEMAN, RH
    HARVEY, DJ
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1994, 8 (08) : 585 - 589
  • [9] Lectin probe analysis of the glycosylation of human parotid salivary glycoproteins
    Carpenter, GH
    Proctor, GB
    Pankhurst, CL
    Zhang, XS
    Shori, DK
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 1995, 23 (04) : S538 - S538
  • [10] A SIMPLE AND RAPID METHOD FOR THE PERMETHYLATION OF CARBOHYDRATES
    CIUCANU, I
    KEREK, F
    [J]. CARBOHYDRATE RESEARCH, 1984, 131 (02) : 209 - 217