Debye Screening in Single-Molecule Carbon Nanotube Field-Effect Sensors

被引:84
作者
Sorgenfrei, Sebastian [1 ]
Chiu, Chien-yang [2 ]
Johnston, Matthew [1 ]
Nuckolls, Colin [2 ]
Shepard, Kenneth L. [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Columbia Univ, Dept Chem, New York, NY 10027 USA
关键词
Debye screening; carbon nanotube; single-molecule detection; field-effect sensor; DNA; microfluidics; DNA; NANOWIRE; FUNCTIONALIZATION; TRANSISTORS; BIOSENSORS; POINT;
D O I
10.1021/nl201781q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough gate potentials, the target DNA is completely repelled and RTN is suppressed.
引用
收藏
页码:3739 / 3743
页数:5
相关论文
共 21 条
[1]   Enzyme-coated carbon nanotubes as single-molecule biosensors [J].
Besteman, K ;
Lee, JO ;
Wiertz, FGM ;
Heering, HA ;
Dekker, C .
NANO LETTERS, 2003, 3 (06) :727-730
[2]   An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices [J].
Chen, RJ ;
Choi, HC ;
Bangsaruntip, S ;
Yenilmez, E ;
Tang, XW ;
Wang, Q ;
Chang, YL ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (05) :1563-1568
[3]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[4]  
Debye P, 1923, PHYS Z, V24, P185
[5]   Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors [J].
Gao, Xuan P. A. ;
Zheng, Gengfeng ;
Lieber, Charles M. .
NANO LETTERS, 2010, 10 (02) :547-552
[6]   Monitoring single-molecule reactivity on a carbon nanotube [J].
Goldsmith, Brett R. ;
Coroneus, John G. ;
Kane, Alexander A. ;
Weiss, Gregory A. ;
Collins, Philip G. .
NANO LETTERS, 2008, 8 (01) :189-194
[7]   Conductance-controlled point functionalization of single-walled carbon nanotubes [J].
Goldsmith, Brett R. ;
Coroneus, John G. ;
Khalap, Vaikunth R. ;
Kane, Alexander A. ;
Weiss, Gregory A. ;
Collins, Philip G. .
SCIENCE, 2007, 315 (5808) :77-81
[8]   Identifying the mechanism of biosensing with carbon nanotube transistors [J].
Heller, Iddo ;
Janssens, Anne M. ;
Mannik, Jaan ;
Minot, Ethan D. ;
Lemay, Serge G. ;
Dekker, Cees .
NANO LETTERS, 2008, 8 (02) :591-595
[9]  
Israelachvili J., 1991, Intermolecular and Surface Forces
[10]   Orienting DNA helices on gold using applied electric fields [J].
Kelley, SO ;
Barton, JK ;
Jackson, NM ;
McPherson, LD ;
Potter, AB ;
Spain, EM ;
Allen, MJ ;
Hill, MG .
LANGMUIR, 1998, 14 (24) :6781-6784