Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression

被引:50
作者
Souret, FF
Kim, Y
Wysiouzil, BE
Wobbe, KK
Weathers, PJ [1 ]
机构
[1] Worcester Polytech Inst, Dept Biol & Biotechnol, Worcester, MA 01609 USA
[2] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA
[3] Worcester Polytech Inst, Dept Chem & Biochem, Worcester, MA 01609 USA
关键词
immobilization; transformed roots; bioreactors;
D O I
10.1002/bit.10711
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hairy roots grow quickly, reach high densities, and can produce significant amounts of secondary metabolites, yet their scale-up to bioreactors remains challenging. Artemisia annua produces a rich array of terpenoids, including the sesquiterpene, artemisinin, and transformed roots of this species provide a good model for studying terpenoid production. These cultures were examined in shake flasks and compared with cultures grown in two types of bioreactors, a mist reactor and a bubble column reactor, which provide very different environments for the growing roots. Mist reactors have been shown previously to result in cultures that produce significantly more artemisinin per gram fresh weight of culture, while bubble column reactors have produced greater biomass. We have compared expression levels of four key terpenoid biosynthetic genes: 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), and farnesyl diphosphate synthase (FPS) in the three culture conditions. In shake flasks we found that although all four genes showed temporal regulation, only FPS expression correlated with artemisinin production. Light also affected the transcription of all four genes. Although expression in reactors was equivalent to or greater than that of roots grown in shake flasks, no correlation was found between expression level within six different zones of each reactor and their respective oxygen levels, light, and root-packing density. Surprisingly, transcriptional regulation of HMGR, DXS, DXR, and FPS was greatly affected by the position of the roots in each reactor. Thus, relying on a single reactor sample to characterize the gene activity in a whole reactor can be misleading, especially if the goal is to examine the difference between reactor types or operating parameters, steps essential in scaling up cultures for production. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 93 条
[1]   Biosynthesis of the isoprene units of chamomile sesquiterpenes [J].
Adam, KP ;
Zapp, J .
PHYTOCHEMISTRY, 1998, 48 (06) :953-959
[2]   Incorporation of 1-[1-13C]deoxy-D-xylulose in chamomile sesquiterpenes [J].
Adam, KP ;
Thiel, R ;
Zapp, J .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1999, 369 (01) :127-132
[3]   Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (Hevea brasiliensis) [J].
Adiwilaga, K ;
Kush, A .
PLANT MOLECULAR BIOLOGY, 1996, 30 (05) :935-946
[4]  
Ausubel F.M., 1996, CURRENT PROTOCOLS MO
[5]   Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum [J].
Back, KW ;
He, SL ;
Kim, KU ;
Shin, DH .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (09) :899-904
[6]  
Bhadra R, 1998, BIOTECHNOL BIOENG, V60, P670, DOI 10.1002/(SICI)1097-0290(19981220)60:6<670::AID-BIT4>3.0.CO
[7]  
2-J
[8]   Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits [J].
Bouvier, F ;
d'Harlingue, A ;
Suire, C ;
Backhaus, RA ;
Camara, B .
PLANT PHYSIOLOGY, 1998, 117 (04) :1423-1431
[9]   Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis [J].
Bouwmeester, HJ ;
Wallaart, TE ;
Janssen, MHA ;
van Loo, B ;
Jansen, BJM ;
Posthumus, MA ;
Schmidt, CO ;
De Kraker, JW ;
König, WA ;
Franssen, MCR .
PHYTOCHEMISTRY, 1999, 52 (05) :843-854
[10]   Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation [J].
Bylund, F ;
Collet, E ;
Enfors, SO ;
Larsson, G .
BIOPROCESS ENGINEERING, 1998, 18 (03) :171-180