Evolutionary tuning of multiple SVM parameters

被引:327
作者
Friedrichs, F [1 ]
Igel, C [1 ]
机构
[1] Ruhr Univ Bochum, Inst Neuroinformat, D-44780 Bochum, Germany
关键词
support vector machines; model selection; evolutionary algorithms;
D O I
10.1016/j.neucom.2004.11.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of model selection for support vector machines (SVMs) is considered. We propose an evolutionary approach to determine multiple SVM hyperparameters: The covariance matrix adaptation evolution strategy (CMA-ES) is used to determine the kernel from a parameterized kernel space and to control the regularization. Our method is applicable to optimize non-differentiable kernel functions and arbitrary model selection criteria. We demonstrate on benchmark datasets that the CMA-ES improves the results achieved by grid search already when applied to few hyperparameters. Further, we show that the CMA-ES is able to handle much more kernel parameters compared to grid-search and that tuning of the scaling and the rotation of Gaussian kernels can lead to better results in comparison to standard Gaussian kernels with a single bandwidth parameter. In particular, more flexibility of the kernel can reduce the number of support vectors. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 25 条
[11]  
Hansen N., 1997, P 5 EUROPEAN C INTEL, P650
[12]  
IGEL C, 2005, IN PRESS TRENDS APPL, V151
[13]  
Jägersküpper J, 2003, LECT NOTES COMPUT SC, V2719, P1068
[14]  
Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169
[15]  
Jong K, 2004, LECT NOTES COMPUT SC, V3005, P41
[16]   Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms [J].
Keerthi, SS .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (05) :1225-1229
[17]  
MEINICKE P, 2002, ADV NEURAL INFORM PR, V15, P985
[18]   Feature selection for computer-aided polyp detection using genetic algorithms [J].
Miller, MT ;
Jerebko, AK ;
Malley, JD ;
Summers, RM .
MEDICAL IMAGING 2003: PHYSIOLOGY AND FUNCTION: METHODS, SYSTEMS, AND APPLICATIONS, 2003, 5031 :102-110
[19]   Soft margins for AdaBoost [J].
Rätsch, G ;
Onoda, T ;
Müller, KR .
MACHINE LEARNING, 2001, 42 (03) :287-320
[20]  
Rechenberg I., 1994, Evolutionsstrategie'94