Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features

被引:72
作者
Zhang, BL [1 ]
Cech, TR [1 ]
机构
[1] Univ Colorado, Howard Hughes Med Inst, Dept Chem & Biochem, Boulder, CO 80309 USA
来源
CHEMISTRY & BIOLOGY | 1998年 / 5卷 / 10期
关键词
metal ions; peptidyl transferase; ribosomal RNA structure; RNA catalysis; RNA structure;
D O I
10.1016/S1074-5521(98)90113-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: One of the most significant questions in understanding the origin of life concerns the order of appearance of DNA, RNA and protein during early biological evolution. If an 'RNA world' was a precursor to extant life, RNA must be able not only to catalyze RNA replication but also to direct peptide synthesis. Iterative RNA selection previously identified catalytic RNAs (ribozymes) that form amide bonds between RNA and an amino acid or between two amino acids. Results: We characterized peptidyl-transferase reactions catalyzed by two different families of ribozymes that use substrates that mimic A site and P site tRNAs. The family II ribozyme secondary structure was modeled using chemical modification, enzymatic digestion and mutational analysis. Two regions resemble the peptidyl-transferase region of 23S ribosomal RNA in sequence and structural context; these regions are important for peptide-bond formation. A shortened form of this ribozyme was engineered to catalyze intermolecular ('trans') peptide-bond formation, with the two amino-acid substrates binding through an attached AMP or oligonucleotide moiety. Conclusions: An in vitro-selected ribozyme can catalyze the same type of peptide-bond formation as a ribosome; the ribozyme resembles the ribosome because a very specific RNA structure is required for substrate binding and catalysis, and both amino acids are attached to nucleotides. It is intriguing that, although there are many different possible peptidyl-transferase ribozymes, the sequence and secondary structure of one is strikingly similar to the 'helical wheel' portion of 23S rRNA implicated in ribosomal peptidyl-transferase activity.
引用
收藏
页码:539 / 553
页数:15
相关论文
共 55 条
[1]   ISOLATION OF NEW RIBOZYMES FROM A LARGE POOL OF RANDOM SEQUENCES [J].
BARTEL, DP ;
SZOSTAK, JW .
SCIENCE, 1993, 261 (5127) :1411-1418
[2]   SPECIFIC INTERACTION BETWEEN THE SELF-SPLICING RNA OF TETRAHYMENA AND ITS GUANOSINE SUBSTRATE - IMPLICATIONS FOR BIOLOGICAL CATALYSIS BY RNA [J].
BASS, BL ;
CECH, TR .
NATURE, 1984, 308 (5962) :820-826
[3]   MODERN METABOLISM AS A PALIMPSEST OF THE RNA WORLD [J].
BENNER, SA ;
ELLINGTON, AD ;
TAUER, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (18) :7054-7058
[4]   A magnesium ion core at the heart of a ribozyme domain [J].
Cate, JH ;
Hanna, RL ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :553-558
[5]   INVITRO SPLICING OF THE RIBOSOMAL-RNA PRECURSOR OF TETRAHYMENA - INVOLVEMENT OF A GUANOSINE NUCLEOTIDE IN THE EXCISION OF THE INTERVENING SEQUENCE [J].
CECH, TR ;
ZAUG, AJ ;
GRABOWSKI, PJ .
CELL, 1981, 27 (03) :487-496
[6]  
CECH TR, 1993, RNA WORLD, P239
[7]   VISUALIZING THE HIGHER-ORDER FOLDING OF A CATALYTIC RNA MOLECULE [J].
CELANDER, DW ;
CECH, TR .
SCIENCE, 1991, 251 (4992) :401-407
[8]   Porphyrin metalation catalyzed by a small RNA molecule [J].
Conn, MM ;
Prudent, JR ;
Schultz, PG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (29) :7012-7013
[9]   ORIGIN OF GENETIC CODE [J].
CRICK, FHC .
JOURNAL OF MOLECULAR BIOLOGY, 1968, 38 (03) :367-&
[10]   ROLE OF DIVALENT METAL-IONS IN THE HAMMERHEAD RNA CLEAVAGE REACTION [J].
DAHM, SC ;
UHLENBECK, OC .
BIOCHEMISTRY, 1991, 30 (39) :9464-9469