On the use of mesophase pitch for the preparation of hierarchical porous carbon monoliths by nanocasting

被引:26
作者
Adelhelm, Philipp [1 ]
Cabrera, Karin [2 ]
Smarsly, Bernd M. [1 ]
机构
[1] Univ Giessen, Inst Phys Chem, D-35392 Giessen, Germany
[2] Merck KGaA, Res & Dev, Biochem & Separat, D-64293 Darmstadt, Germany
关键词
mesophase pitch; nanocasting; carbon structure; hierarchical porosity; ORDERED MESOPOROUS CARBON; GRAPHITIC PORE WALLS; NANOPOROUS CARBON; RATE CAPABILITY; MESOSTRUCTURE; BATTERIES; TEMPLATE; POROSITY;
D O I
10.1088/1468-6996/13/1/015010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed study is given on the synthesis of a hierarchical porous carbon, possessing both meso- and macropores, using a mesophase pitch (MP) as the carbon precursor. This carbon material is prepared by the nanocasting approach involving the replication of a porous silica monolith (hard templating). While this carbon material has already been tested in energy storage applications, various detailed aspects of its formation and structure are addressed in this study. Scanning electron microscopy (SEM), Hg porosimetry and N-2 physisorption are used to characterize the morphology and porosity of the carbon replica. A novel approach for the detailed analysis of wide-angle x-ray scattering (WAXS) from non-graphitic carbons is applied to quantitatively compare the graphene microstructures of carbons prepared using MP and furfuryl alcohol (FA). This WAXS analysis underlines the importance of the carbon precursor in the synthesis of templated porous carbon materials via the nanocasting route. Our study demonstrates that a mesophase pitch is a superior precursor whenever a high-purity, low-micropore-content and well-developed graphene structure is desired.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates [J].
Adelhelm, Philipp ;
Hu, Yong-Sheng ;
Chuenchom, Laemthong ;
Antonietti, Markus ;
Smarsly, Bernd M. ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (22) :4012-+
[2]   Meso/macroporous carbon monoliths from polymeric foams [J].
Alvarez, S ;
Esquena, J ;
Solans, C ;
Fuertes, AB .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (11) :897-899
[3]   Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries [J].
Doherty, Cara M. ;
Caruso, Rachel A. ;
Smarsly, Bernd M. ;
Adelhelm, Philipp ;
Drummond, Calum J. .
CHEMISTRY OF MATERIALS, 2009, 21 (21) :5300-5306
[4]   High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J].
Fan, Li-Zhen ;
Hu, Yong-Sheng ;
Maier, Joachim ;
Adelhelm, Philipp ;
Smarsly, Bernd ;
Antonietti, Markus .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3083-3087
[5]   Direct preparation of nanoporous carbon by nanocasting [J].
Han, BH ;
Zhou, WZ ;
Sayari, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (12) :3444-3445
[6]   Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability [J].
Hu, Yong-Sheng ;
Adelhelm, Philipp ;
Smarsly, Bernd M. ;
Hore, Sarmimala ;
Antonietti, Markus ;
Maier, Joachim .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (12) :1873-1878
[7]   Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J].
Jun, S ;
Joo, SH ;
Ryoo, R ;
Kruk, M ;
Jaroniec, M ;
Liu, Z ;
Ohsuna, T ;
Terasaki, O .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (43) :10712-10713
[8]   A synthetic route to ordered mesoporous carbon materials with graphitic pore walls [J].
Kim, TW ;
Park, IS ;
Ryoo, R .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (36) :4375-4379
[9]   Synthesis of carbon monolith with bimodal meso/macroscopic pore structure and its application in asymmetric catalysis [J].
Kim, Yong-Suk ;
Guo, Xiao-Feng ;
Kim, Geon-Joong .
CATALYSIS TODAY, 2010, 150 (1-2) :91-99
[10]   Colloidal imprinting: A novel approach to the synthesis of mesoporous carbons [J].
Li, ZJ ;
Jaroniec, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (37) :9208-9209