Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals

被引:114
作者
Polleux, J
Pinna, N
Antonietti, M
Hess, C
Wild, U
Schlögl, R
Niederberger, M
机构
[1] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
[2] Fritz Haber Inst Max Planck Soc, Dept Inorgan Chem, D-14195 Berlin, Germany
关键词
anatase; nanoparticle assembly; nanostructures; nonaqueous synthesis; surface chemistry;
D O I
10.1002/chem.200401050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoparticle powders composed of surface-functionalized anatase crystals with diameters of about 3 nm self-organize into different structures upon redispersion in water. The assembly is directed by a small amount of a low-molecular-weight functional ligand (the "assembler") adsorbed on the surface of the nanoparticles. The ligand functionality determines the anisotropy of the resulting structures. Multidentate ligands, such as trizma ((HOCH2)(3)CNH2) and serinol ((HOCH2)(2)CNH2), with a chargeable terminal group preferentially induce the formation of anisotropic nanostructures several hundreds of nanometers in total length, whereas all the other investigated ligands (ethanolamine H2N(CH2)(2)OH, glycine hydroxamate H2NCH2CONHOH, dopamine (OH)(2)C6H3(CH2)(2)NH3Cl, tris (HOCH2)(3)-CCH3) mainly lead to uncontrolled agglomeration. Experimental data suggests that the anisotropic assembly is a consequence of the water-promoted desorption of the organic ligands from the 10011 faces of the crystalline building blocks together with the dissociative adsorption of water on these crystal faces. Both processes induce the preferred attachment of the titania nanoparticles along the [001] direction. The use of polydentate and charged ligands to functionalize the surface of nanoparticles thus provides a versatile tool to control their arrangement on the nanoscale.
引用
收藏
页码:3541 / 3551
页数:11
相关论文
共 71 条
[11]   Molecular photovoltaics [J].
Hagfeldt, A ;
Grätzel, M .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (05) :269-277
[12]   Multigrarn scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals [J].
Joo, J ;
Yu, T ;
Kim, YW ;
Park, HM ;
Wu, FX ;
Zhang, JZ ;
Hyeon, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (21) :6553-6557
[13]   Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals [J].
Jun, YW ;
Casula, MF ;
Sim, JH ;
Kim, SY ;
Cheon, J ;
Alivisatos, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (51) :15981-15985
[14]   Efficient photochemical water splitting by a chemically modified n-TiO2 2 [J].
Khan, SUM ;
Al-Shahry, M ;
Ingler, WB .
SCIENCE, 2002, 297 (5590) :2243-2245
[15]   Morphology and topochemical reactions of novel vanadium oxide nanotubes [J].
Krumeich, F ;
Muhr, HJ ;
Niederberger, M ;
Bieri, F ;
Schnyder, B ;
Nesper, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (36) :8324-8331
[16]  
Lin-Vien D., 1991, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules
[17]   Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals [J].
Manna, L ;
Scher, EC ;
Alivisatos, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (51) :12700-12706
[18]   A photovoltaic device structure based on internal electron emission [J].
McFarland, EW ;
Tang, J .
NATURE, 2003, 421 (6923) :616-618
[19]   Siderophore-mediated covalent bonding to metal (oxide) surfaces during biofilm initiation by Pseudomonas aeruginosa bacteria [J].
McWhirter, MJ ;
Bremer, PJ ;
Lamont, IL ;
McQuillan, AJ .
LANGMUIR, 2003, 19 (09) :3575-3577
[20]   Nonaqueous and halide-free route to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation [J].
Niederberger, M ;
Garnweitner, G ;
Pinna, N ;
Antonietti, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (29) :9120-9126