The structure of an RNA dodecamer shows how tandem U-U base pairs increase the range of stable RNA structures and the diversity of recognition sites

被引:86
作者
Lietzke, SE [1 ]
Barnes, CL [1 ]
Berglund, JA [1 ]
Kundrot, CE [1 ]
机构
[1] UNIV COLORADO,DEPT CHEM & BIOCHEM,BOULDER,CO 80309
基金
美国国家科学基金会;
关键词
difference distance matrix; RNA structure; solvent accessible surface; U-U base pair; X-ray crystallography;
D O I
10.1016/S0969-2126(96)00099-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Non-canonical base pairs are fundamental building blocks of RNA structures. They can adopt geometries quite different from those of canonical base pairs and are common in RNA molecules that do not transfer sequence information, Tandem U-U base pairs occur frequently, and can stabilize duplex formation despite the fact that a single U-U base pair is destabilizing. Results: We determined the crystal structure of the RNA dodecamer GGCGCUUGCGUC at 2.4 Angstrom resolution. The molecule forms a duplex containing tandem U-U base pairs, which introduce an overall bend of 11-12 degrees in the duplex resulting from conformational changes at each interface between the tandem U-U base pairs and a flanking duplex sequence, The formation of the U-U base pairs cause small changes in several backbone torsion angles; base stacking is preserved and two hydrogen bonds are formed per base pair, explaining the stability of the structure. Conclusions: Tandem U-U base pairs can produce stable structures not accessible to normal A-form RNA, which may allow the formation of specific interfaces for RNA-RNA or RNA-protein recognition. These base-pairs show an unusual pattern of hydrogen-bond donors and accepters in the major and minor grooves, which could also act as a recognition site.
引用
收藏
页码:917 / 930
页数:14
相关论文
共 38 条
[1]   EFFECTS OF FLANKING G.C BASE-PAIRS ON INTERNAL WATSON-CRICK, G.U, AND NONBONDED BASE PARIS WITHIN A SHORT RIBONUCLEIC-ACID DUPLEX [J].
ALKEMA, D ;
HADER, PA ;
BELL, RA ;
NEILSON, T .
BIOCHEMISTRY, 1982, 21 (09) :2109-2117
[2]  
ARNOTT S, 1973, J MOL BIOL, V184, P119
[3]   STRUCTURE OF AN RNA DOUBLE HELIX INCLUDING URACIL-URACIL BASE-PAIRS IN AN INTERNAL LOOP [J].
BAEYENS, KJ ;
DEBONDT, HL ;
HOLBROOK, SR .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (01) :56-62
[4]   CRYSTAL-STRUCTURE OF DOMAIN-A OF THERMUS-FLAVUS 5S RIBOSOMAL-RNA AND THE CONTRIBUTION OF WATER-MOLECULES TO ITS STRUCTURE [J].
BETZEL, C ;
LORENZ, S ;
FURSTE, JP ;
BALD, R ;
ZHANG, M ;
SCHNEIDER, TR ;
WILSON, KS ;
ERDMANN, VA .
FEBS LETTERS, 1994, 351 (02) :159-164
[5]  
Brunger AT, 1993, XPLOR MANUAL VERSION
[6]   REPRESENTATION OF THE SECONDARY AND TERTIARY STRUCTURE OF GROUP-I INTRONS [J].
CECH, TR ;
DAMBERGER, SH ;
GUTELL, RR .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (05) :273-280
[7]   STRUCTURE OF A MISPAIRED RNA DOUBLE HELIX AT 1.6-A RESOLUTION AND IMPLICATIONS FOR THE PREDICTION OF RNA SECONDARY STRUCTURE [J].
CRUSE, WBT ;
SALUDJIAN, P ;
BIALA, E ;
STRAZEWSKI, P ;
PRANGE, T ;
KENNARD, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (10) :4160-4164
[8]   HIGH-RESOLUTION STRUCTURE OF THE RNA DUPLEX [U(U-A)6A]2 [J].
DOCKBREGEON, AC ;
CHEVRIER, B ;
PODJARNY, A ;
MORAS, D ;
DEBEAR, JS ;
GOUGH, GR ;
GILHAM, PT ;
JOHNSON, JE .
NATURE, 1988, 335 (6188) :375-378
[9]   CRYSTALLOGRAPHIC STRUCTURE OF AN RNA HELIX - [U(UA)6A]2 [J].
DOCKBREGEON, AC ;
CHEVRIER, B ;
PODJARNY, A ;
JOHNSON, J ;
DEBEAR, JS ;
GOUGH, GR ;
GILHAM, PT ;
MORAS, D .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 209 (03) :459-474
[10]   Pseudoknots and the control of protein synthesis [J].
Draper, D. E. .
CURRENT OPINION IN CELL BIOLOGY, 1990, 2 (06) :1099-1103