The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX

被引:44
作者
Boyle, D. P. [1 ]
Maingi, R. [2 ]
Snyder, P. B. [3 ]
Manickam, J. [1 ]
Osborne, T. H. [3 ]
Bell, R. E. [1 ]
LeBlanc, B. P. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Gen Atom Co, San Diego, CA 92121 USA
关键词
BALLOONING MODES; DIII-D; REGIME; PERFORMANCE; TOKAMAKS; ITER; STABILITY; DENSITY; PLASMAS; PHYSICS;
D O I
10.1088/0741-3335/53/10/105011
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused the density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment [J].
Bell, M. G. ;
Kugel, H. W. ;
Kaita, R. ;
Zakharov, L. E. ;
Schneider, H. ;
LeBlanc, B. P. ;
Mansfield, D. ;
Bell, R. E. ;
Maingi, R. ;
Ding, S. ;
Kaye, S. M. ;
Paul, S. F. ;
Gerhardt, S. P. ;
Canik, J. M. ;
Hosea, J. C. ;
Taylor, G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[2]   Comparison of poloidal velocity measurements to neoclassical theory on the National Spherical Torus Experimenta) [J].
Bell, R. E. ;
Andre, R. ;
Kaye, S. M. ;
Kolesnikov, R. A. ;
LeBlanc, B. P. ;
Rewoldt, G. ;
Wang, W. X. ;
Sabbagh, S. A. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[3]   Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment [J].
Canik, J. M. ;
Maingi, R. ;
Kubota, S. ;
Ren, Y. ;
Bell, R. E. ;
Callen, J. D. ;
Guttenfelder, W. ;
Kugel, H. W. ;
LeBlanc, B. P. ;
Osborne, T. H. ;
Soukhanovskii, V. A. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[4]   Progress in the development of ELM pace-making with non-axisymmetric magnetic perturbations in NSTX [J].
Canik, J. M. ;
Sontag, A. C. ;
Maingi, R. ;
Bell, R. ;
Gates, D. A. ;
Gerhardt, S. P. ;
Kugel, H. W. ;
LeBlanc, B. P. ;
Menard, J. ;
Paul, S. ;
Sabbagh, S. ;
Soukhanovskii, V. A. .
NUCLEAR FUSION, 2010, 50 (06)
[5]   On Demand Triggering of Edge Localized Instabilities Using External Nonaxisymmetric Magnetic Perturbations in Toroidal Plasmas [J].
Canik, J. M. ;
Maingi, R. ;
Evans, T. E. ;
Bell, R. E. ;
Gerhardt, S. P. ;
LeBlanc, B. P. ;
Manickam, J. ;
Menard, J. E. ;
Osborne, T. H. ;
Park, J. -K. ;
Paul, S. F. ;
Snyder, P. B. ;
Sabbagh, S. A. ;
Kugel, H. W. ;
Unterberg, E. A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[6]   SHEAR, PERIODICITY, AND PLASMA BALLOONING MODES [J].
CONNOR, JW ;
HASTIE, RJ ;
TAYLOR, JB .
PHYSICAL REVIEW LETTERS, 1978, 40 (06) :396-399
[7]   Magnetohydrodynamic stability of tokamak edge plasmas [J].
Connor, JW ;
Hastie, RJ ;
Wilson, HR ;
Miller, RL .
PHYSICS OF PLASMAS, 1998, 5 (07) :2687-2700
[8]   Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary [J].
Evans, TE ;
Moyer, RA ;
Thomas, PR ;
Watkins, JG ;
Osborne, TH ;
Boedo, JA ;
Doyle, EJ ;
Fenstermacher, ME ;
Finken, KH ;
Groebner, RJ ;
Groth, M ;
Harris, JH ;
La Haye, RJ ;
Lasnier, CJ ;
Masuzaki, S ;
Ohyabu, N ;
Pretty, DG ;
Rhodes, TL ;
Reimerdes, H ;
Rudakov, DL ;
Schaffer, MJ ;
Wang, G ;
Zeng, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235003-1
[9]   Key ITER plasma edge and plasma-material interaction issues [J].
Federici, G ;
Andrew, P ;
Barabaschi, P ;
Brooks, J ;
Doerner, R ;
Geier, A ;
Herrmann, A ;
Janeschitz, G ;
Krieger, K ;
Kukushkin, A ;
Loarte, A ;
Neu, R ;
Saibene, G ;
Shimada, M ;
Strohmayer, G ;
Sugihara, M .
JOURNAL OF NUCLEAR MATERIALS, 2003, 313 :11-22
[10]   Quiescent double barrier regime in the DIII-D tokamak [J].
Greenfield, CM ;
Burrell, KH ;
DeBoo, JC ;
Doyle, EJ ;
Stallard, BW ;
Synakowski, EJ ;
Fenzi, C ;
Gohil, P ;
Groebner, RJ ;
Lao, LL ;
Makowski, MA ;
McKee, GR ;
Moyer, RA ;
Rettig, CL ;
Rhodes, TL ;
Pinsker, RI ;
Staebler, GM ;
West, WP .
PHYSICAL REVIEW LETTERS, 2001, 86 (20) :4544-4547