Consequences of surface heterogeneity for parameter retrieval from 1.4-GHz multiangle SMOS observations

被引:35
作者
de Griend, AAV [1 ]
Wigneron, JP
Waldteufel, P
机构
[1] Vrije Univ Amsterdam, Fac Earth & Life Sci, Dept Hydrol, NL-1081 HV Amsterdam, Netherlands
[2] INRA, Unite Bioclimatol, F-33883 Villenave Dornon, France
[3] IPSL, CNRS, Serv Aeron, F-78140 Velizy Villacoublay, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2003年 / 41卷 / 04期
关键词
multiangle observations; parameter retrieval; passive microwaves; Soil Moisture and Ocean Salinity (SMOS); surface heterogeneity;
D O I
10.1109/TGRS.2003.811083
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The L-band (1.4 GHz) two-dimensional microwave interferometric radiometer, the payload of the Soil Moisture and Ocean Salinity (SMOS) mission, will observe elements of the earth's surface simultaneously at multiple angles. Compared to single-angle observations, this multiangle observation technology is expected to. significantly improve the capability of passive microwave remote sensing to retrieve soil moisture and vegetation properties from space. Although multiangle retrieval algorithms have been developed and successfully evaluated for homogeneous surfaces on the basis of simulation studies, the inherently large footprint of microwave observations from space has serious consequences for parameter retrieval from "real-world" inhomogeneous surfaces. At the spatial scale of SMOS (similar to30 km for nadir observations), the earth's surface is inhomogeneous; almost by default. This aspect has not been fully accounted for yet. This study gives some insight into the consequences of vegetation spatial heterogeneity for the retrieval of "effective" surface parameters (soil moisture, canopy microwave transmissivity, and effective surface temperature) from inhomogeneous surfaces without prior knowledge of the within-pixel canopy heterogeneity.
引用
收藏
页码:803 / 811
页数:9
相关论文
共 37 条
[11]   VEGETATION EFFECTS ON THE MICROWAVE EMISSION OF SOILS [J].
JACKSON, TJ ;
SCHMUGGE, TJ .
REMOTE SENSING OF ENVIRONMENT, 1991, 36 (03) :203-212
[12]   PASSIVE MICROWAVE REMOTE-SENSING OF SOIL-MOISTURE FROM AN AIRCRAFT PLATFORM [J].
JACKSON, TJ ;
SCHMUGGE, TJ ;
ONEILL, P .
REMOTE SENSING OF ENVIRONMENT, 1984, 14 (1-3) :135-151
[13]   Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment [J].
Jackson, TJ ;
Le Vine, DM ;
Hsu, AY ;
Oldak, A ;
Starks, PJ ;
Swift, CT ;
Isham, JD ;
Haken, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05) :2136-2151
[14]  
JACKSON TJ, 1977, WATER RESOUR RES, V33, P1475
[15]   Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission [J].
Kerr, YH ;
Waldteufel, P ;
Wigneron, JP ;
Martinuzzi, JM ;
Font, J ;
Berger, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08) :1729-1735
[16]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441
[17]   SEASONAL EVOLUTION OF MICROWAVE-RADIATION FROM AN OAT FIELD [J].
MATZLER, C .
REMOTE SENSING OF ENVIRONMENT, 1990, 31 (03) :161-173
[18]   A MODEL FOR MICROWAVE EMISSION FROM VEGETATION-COVERED FIELDS [J].
MO, T ;
CHOUDHURY, BJ ;
SCHMUGGE, TJ ;
WANG, JR ;
JACKSON, TJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1982, 87 (NC13) :1229-1237
[19]  
Njoku E.G., 2000, Microwave Radiometry for Remote Sensing of the Earth's Surface and Atmosphere, P525
[20]  
NJOUKU E, 1996, SCALING HYDROLOGY US, P19