Lack of p53 Ser389 phosphorylation predisposes mice to develop 2-acetylaminofluorene-induced bladder tumors but not ionizing radiation-induced lymphomas

被引:30
作者
Hoogervorst, EM
Bruins, W
Zwart, E
van Ostrom, CTM
van den Aardweg, GJ
Beems, RB
van den Berg, J
Jacks, T
van Steeg, H
de Vries, A [1 ]
机构
[1] Natl Inst Publ Hlth & Environm, Lab Toxicol Pathol & Genet, NL-3720 BA Bilthoven, Netherlands
[2] Erasmus MC, Josephine Nefkens Inst, Rotterdam, Netherlands
[3] MIT, Howard Hughes Med Inst, Canc Res Ctr, Cambridge, MA USA
关键词
D O I
10.1158/0008-5472.CAN-04-4328
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cellular activity of the tumor suppressor protein p53 is primarily regulated by posttranslational modifications. Phosphorylation of the COOH terminus, including Ser389, is thought to result in a conformational change of the p53 protein, enhancing DNA binding and transcriptional activity. In vitro studies presented here show that, in addition to,UV radiation, Ser389 is phosphorylated upon exposure to 2-acetylaminofluorene (2-AAF). Both agents induce bulky DNA adducts repaired by nucleotide excision repair (NER). In contrast, ionizing radiation, known to induce DNA damage not repaired by NER, does not result in Ser389 phosphorylation. Previously, we have shown that p53.S389A mutant mice, lacking the Ser389 phosphorylation site, are sensitive to developing UV-induced skin tumors. Here, we show that p53.S389A mice are also prone to developing 2-AAF-induced urinary bladder tumors, whereas no increased tumor response was found upon ionizing irradiation. These results provide evidence for our hypothesis that phosphorylation of Ser389 is important for activation of p53 to exert its function as a tumor suppressor not exclusively upon the presence of UV-induced DNA damage, but also upon exposure to other bulky adduct-inducing agents. Analysis of 2-AAF- and UV-induced tumors from p53.S389A mice revealed the presence of additional p53 mutations, indicating that lack of Ser389 phosphorylation by itself is not sufficient to abrogate p53 function in tumor suppression. In addition, analyses of skin tumors of p53.S389A mice revealed an interesting hotspot mutation previously found exclusively in NER-deficient mice and patients.
引用
收藏
页码:3610 / 3616
页数:7
相关论文
共 50 条
[1]   p53 and regulation of DNA damage recognition during nucleotide excision repair [J].
Adimoolam, S ;
Ford, JM .
DNA REPAIR, 2003, 2 (09) :947-954
[2]   p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene [J].
Adimoolam, S ;
Ford, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12985-12990
[3]   Post-translational modifications and activation of p53 by genotoxic stresses [J].
Appella, E ;
Anderson, CW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (10) :2764-2772
[4]  
Appella E, 2000, PATHOL BIOL, V48, P227
[5]  
Backlund MG, 2001, CANCER RES, V61, P6577
[6]   Multiple roles of the tumor suppressor p53 [J].
Bargonetti, J ;
Manfredi, JJ .
CURRENT OPINION IN ONCOLOGY, 2002, 14 (01) :86-91
[7]   Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389 [J].
Bruins, W ;
Zwart, E ;
Attardi, LD ;
Iwakuma, T ;
Hoogervorst, EM ;
Beems, RB ;
Miranda, B ;
van Oostrom, CTM ;
van den Berg, J ;
van den Aardweg, GJ ;
Lozano, G ;
van Steeg, H ;
Jacks, T ;
de Vries, A .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (20) :8884-8894
[8]   Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses [J].
Chao, C ;
Hergenhahn, M ;
Kaeser, MD ;
Wu, ZQ ;
Saito, S ;
Iggo, R ;
Hollstein, M ;
Appella, E ;
Xu, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (42) :41028-41033
[9]  
Chehab NH, 2000, GENE DEV, V14, P278
[10]   Mechanisms of human DNA repair: an update [J].
Christmann, M ;
Tomicic, MT ;
Roos, WP ;
Kaina, B .
TOXICOLOGY, 2003, 193 (1-2) :3-34