Gas adsorption and storage in metal-organic framework MOF-177

被引:543
作者
Li, Yingwei [1 ]
Yang, Ralph T. [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/la702466d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gas adsorption experiments have been carried out on a zinc benzenetribenzoate metal-organic framework material, MOF-177. Hydrogen adsorption on MOF-177 at 298 K and 10 MPa gives an adsorption capacity of similar to 0.62 wt %, which is among the highest hydrogen storage capacities reported in porous materials at ambient temperatures. The heats of adsorption for H-2 on MOF-177 were -11.3 to -5.8 kJ/mol. By adding a H2 dissociating catalyst and using our bridge building technique to build carbon bridges for hydrogen spillover, the hydrogen adsorption capacity in MOF-177 was enhanced by a factor of similar to 2.5, to 1.5 wt % at 298 K and 10 MPa, and the adsorption was reversible. N-2 and 02 adsorption measurements showed that 02 was adsorbed more favorably than N-2 on MOF-177 with a selectivity of similar to 1.8 at 1 atm and 298 K, which makes MOF-177 a promising candidate for air separation. The isotherm was linear for 02 while being concave for N-2. Water vapor adsorption studies indicated that MOF-177 adsorbed up to similar to 10 wt % H2O at 298 K. The framework structure of MOF-177 was not stable upon H2O adsorption, which decomposed after exposure to ambient air in 3 days. All the results suggested that MOF-177 could be a potentially promising material for gas separation and storage applications at ambient temperature (under dry conditions or with predrying).
引用
收藏
页码:12937 / 12944
页数:8
相关论文
共 55 条
[1]   Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J].
Bourrelly, S ;
Llewellyn, PL ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Férey, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (39) :13519-13521
[2]  
CHAE HK, 2004, SCIENCE, V427, P523
[3]   Hydrogen adsorption in an interpenetrated dynamic metal-organic framework [J].
Chen, Banglin ;
Ma, Shengqian ;
Zapata, Fatima ;
Lobkovsky, Emil B. ;
Yang, Jun .
INORGANIC CHEMISTRY, 2006, 45 (15) :5718-5720
[4]   High H2 adsorption in a microporous metal-organic framework with open metal sites [J].
Chen, BL ;
Ockwig, NW ;
Millward, AR ;
Contreras, DS ;
Yaghi, OM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) :4745-4749
[5]  
CRANK J, 1979, MATH DIFFUSION, P89
[6]   Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate [J].
Dailly, A ;
Vajo, JJ ;
Ahn, CC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (03) :1099-1101
[7]   Hydrogen storage using carbon adsorbents: past, present and future [J].
Dillon, AC ;
Heben, MJ .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (02) :133-142
[8]   Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3 [J].
Dinca, M ;
Long, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) :9376-9377
[9]   Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites [J].
Dinca, Mircea ;
Dailly, Anne ;
Liu, Yun ;
Brown, Craig M. ;
Neumann, Dan. A. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (51) :16876-16883
[10]   Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: Syntheses, structures, and hydrogen storage properties [J].
Dinca, Mircea ;
Yu, Anta F. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (27) :8904-8913