Lipschitz-Hankel spaces and partial Hankel integrals

被引:11
作者
Betancor, JJ [1 ]
Rodriguez-Messa, L [1 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, Tenerife 38271, Islas Canarias, Spain
关键词
Hankel transform; Bochner-Riesz means; L-P-spaces;
D O I
10.1080/10652469808819181
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the partial Hankel integral s(T)(phi) of phi converges to phi, as T --> infinity, when phi is in a Lipschitz-Hankel space. We also give sufficient conditions on a function phi in order that the Hankel transform h(mu)(phi) of phi is in a L-P-space.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 13 条
[1]  
AGUILERA NE, 1983, PAC J MATH, V104, P1
[2]  
BETANCOR JJ, LIPSCHITZ HANKEL SPA
[3]   EQUICONVERGENCE THEOREMS FOR FOURIER-BESSEL EXPANSIONS WITH APPLICATIONS TO THE HARMONIC-ANALYSIS OF RADIAL FUNCTIONS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES [J].
COLZANI, L ;
CRESPI, A ;
TRAVAGLINI, G ;
VIGNATI, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :43-55
[4]  
Erdelyi A, 1953, TABLES INTEGRAL TRAN, V2
[5]  
GIANG DV, 1994, ACTA SCI MATH SZEGED, V59, P257
[8]  
Hirschman Jr I.I., 1960, J ANAL MATH, V8, P307, DOI [DOI 10.1007/BF02786854, DOI 10.1007/BF02786855]
[10]   ALMOST EVERYWHERE CONVERGENCE OF THE SPHERICAL PARTIAL-SUMS FOR RADIAL FUNCTIONS [J].
PRESTINI, E .
MONATSHEFTE FUR MATHEMATIK, 1988, 105 (03) :207-216