EQUICONVERGENCE THEOREMS FOR FOURIER-BESSEL EXPANSIONS WITH APPLICATIONS TO THE HARMONIC-ANALYSIS OF RADIAL FUNCTIONS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES

被引:32
作者
COLZANI, L [1 ]
CRESPI, A [1 ]
TRAVAGLINI, G [1 ]
VIGNATI, M [1 ]
机构
[1] POLITECN TORINO, DIPARTIMENTO MATEMAT, I-10129 TURIN, ITALY
关键词
FOURIER-BESSEL EXPANSIONS; LORENTZ SPACES; POINTWISE CONVERGENCE;
D O I
10.2307/2154443
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall prove an equiconvergence theorem between Fourier-Bessel expansions of functions in certain weighted Lebesgue spaces and the classical cosine Fourier expansions of suitable related functions. These weighted Lebesgue spaces arise naturally in the harmonic analysis of radial functions on euclidean spaces and we shall use the equiconvergence result to deduce sharp results for the pointwise almost everywhere convergence of Fourier integrals of radial functions in the Lorentz spaces L(p, q)(R(n)) . Also we shall briefly apply the above approach to the study of the harmonic analysis of radial functions on noneuclidean hyperbolic spaces.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 14 条
[1]   THE MULTIPLIER FOR THE BALL AND RADIAL FUNCTIONS [J].
CHANILLO, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 55 (01) :18-24
[2]  
COLZANI L, 1993, ACTA MATH HUNG, V61, P291
[3]  
CRESPI A, 1989, THESIS U STUDI MILAN
[4]  
Hankel H., 1875, MATH ANN, V8, P471, DOI DOI 10.1007/BF02106597
[6]  
Koornwinder T.H., 1984, JACOBI FUNCTIONS ANA, P1
[7]   ALMOST EVERYWHERE CONVERGENCE OF THE SPHERICAL PARTIAL-SUMS FOR RADIAL FUNCTIONS [J].
PRESTINI, E .
MONATSHEFTE FUR MATHEMATIK, 1988, 105 (03) :207-216
[8]   END-POINT ESTIMATES FOR THE MAXIMAL OPERATOR ASSOCIATED TO SPHERICAL PARTIAL-SUMS ON RADIAL FUNCTIONS [J].
ROMERA, E ;
SORIA, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 111 (04) :1015-1022
[9]   EXPANSIONS FOR SPHERICAL FUNCTIONS ON NONCOMPACT SYMMETRIC SPACES [J].
STANTON, RJ ;
TOMAS, PA .
ACTA MATHEMATICA, 1978, 140 (3-4) :251-276
[10]  
STEIN E. M., 1971, INTRO FOURIER ANAL E