The Arabidopsis RING E3 Ubiquitin Ligase AtAIRP2 Plays Combinatory Roles with AtAIRP1 in Abscisic Acid-Mediated Drought Stress Responses

被引:106
作者
Cho, Seok Keun [1 ]
Ryu, Moon Young [1 ]
Seo, Dong Hye [1 ]
Kang, Bin Goo [2 ]
Kim, Woo Taek [1 ]
机构
[1] Yonsei Univ, Dept Syst Biol, Coll Life Sci & Biotechnol, Seoul 120749, South Korea
[2] Korea Inst Sci & Technol Informat, ReSEAT Program, Seoul 130741, South Korea
基金
新加坡国家研究基金会;
关键词
FUNCTIONAL-ANALYSIS; POSITIVE REGULATOR; PROTEIN-KINASES; GENE-EXPRESSION; BIOTIC STRESS; ABA; TOLERANCE; REVEALS; GROWTH; ACTS;
D O I
10.1104/pp.111.185595
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The ubiquitin (Ub)-26S proteasome pathway is implicated in various cellular processes in higher plants. AtAIRP1, a C3H2C3-type RING (for Really Interesting New Gene) E3 Ub ligase, is a positive regulator in the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)-dependent drought response. Here, the AtAIRP2 (for Arabidopsis ABA-insensitive RING protein 2) gene was identified and characterized. AtAIRP2 encodes a cytosolic C3HC4-type RING E3 Ub ligase whose expression was markedly induced by ABA and dehydration stress. Thus, AtAIRP2 belongs to a different RING subclass than AtAIRP1 with a limited sequence identity. AtAIRP2-overexpressing transgenic (35S:AtAIRP2-sGFP) and atairp2 loss-of-function mutant plants exhibited hypersensitive and hyposensitive phenotypes, respectively, to ABA in terms of seed germination, root growth, and stomatal movement. 35S: AtAIRP2-sGFP plants were highly tolerant to severe drought stress, and atairp2 alleles were more susceptible to water stress than were wild-type plants. Higher levels of drought-induced hydrogen peroxide production were detected in 35S: AtAIRP2-sGFP as compared with atairp2 plants. ABA-inducible drought-related genes were up-regulated in 35S: AtAIRP2-sGFP and down-regulated in atairp2 progeny. The positive effects of AtAIRP2 on ABA-induced stress genes were dependent on SNF1-related protein kinases, key components of the ABA signaling pathway. Therefore, AtAIRP2 is involved in positive regulation of ABA-dependent drought stress responses. To address the functional relationship between AtAIRP1 and AtAIRP2, FLAG-AtAIRP1 and AtAIRP2-sGFP genes were ectopically expressed in atairp2-2 and atairp1 plants, respectively. Constitutive expression of FLAG-AtAIRP1 and AtAIRP2-sGFP in atairp2-2 and atairp1 plants, respectively, reciprocally rescued the loss-of-function ABA-insensitive phenotypes during germination. Additionally, atairp1/35S: AtAIRP2-sGFP and atairp2-2/35S: FLAG-AtAIRP1 complementation lines were more tolerant to dehydration stress relative to atairp1 and atairp2-2 single knockout plants. Overall, these results suggest that AtAIRP2 plays combinatory roles with AtAIRP1 in Arabidopsis ABA-mediated drought stress responses.
引用
收藏
页码:2240 / 2257
页数:18
相关论文
共 72 条
[1]   Plant molecular stress responses face climate change [J].
Ahuja, Ishita ;
de Vos, Ric C. H. ;
Bones, Atle M. ;
Hall, Robert D. .
TRENDS IN PLANT SCIENCE, 2010, 15 (12) :664-674
[2]   Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.) [J].
Bae, Hansol ;
Kim, Sung Keun ;
Cho, Seok Keun ;
Kang, Bin Goo ;
Kim, Woo Taek .
PLANT SCIENCE, 2011, 180 (06) :775-782
[3]   The Arabidopsis RING Finger E3 Ligase RHA2a Is a Novel Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development [J].
Bu, Qingyun ;
Li, Hongmei ;
Zhao, Qingzhen ;
Jiang, Hongling ;
Zhai, Qingzhe ;
Zhang, Jie ;
Wu, Xiaoyan ;
Sun, Jiaqiang ;
Xie, Qi ;
Wang, Daowen ;
Li, Chuanyou .
PLANT PHYSIOLOGY, 2009, 150 (01) :463-481
[4]   ROS-Mediated ABA Signaling [J].
Cho, Daeshik ;
Shin, Dongjin ;
Jeon, Byeong Wook ;
Kwak, June M. .
JOURNAL OF PLANT BIOLOGY, 2009, 52 (02) :102-113
[5]   Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligases that play combinatory roles in response to drought stress [J].
Cho, Seok Keun ;
Ryu, Moon Young ;
Song, Charlotte ;
Kwak, June M. ;
Kim, Woo Taek .
PLANT CELL, 2008, 20 (07) :1899-1914
[6]   Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-box E3 ubiquitin ligase homolog [J].
Cho, Seok Keun ;
Chung, Hoo Sun ;
Ryu, Moon Young ;
Park, Mi Jin ;
Lee, Myeong Min ;
Bahk, Young-Yil ;
Kim, Jungmook ;
Pai, Hyun Sook ;
Kim, Woo Taek .
PLANT PHYSIOLOGY, 2006, 142 (04) :1664-1682
[7]   Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants [J].
Cho, Seok Keun ;
Kim, Jee Eun ;
Park, Jong-A ;
Eom, Tae Jin ;
Kim, Woo Taek .
FEBS LETTERS, 2006, 580 (13) :3136-3144
[8]   Abscisic Acid: Emergence of a Core Signaling Network [J].
Cutler, Sean R. ;
Rodriguez, Pedro L. ;
Finkelstein, Ruth R. ;
Abrams, Suzanne R. .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 61, 2010, 61 :651-679
[9]   Ubiquitin, hormones and biotic stress in plants [J].
Dreher, Kate ;
Callis, Judy .
ANNALS OF BOTANY, 2007, 99 (05) :787-822
[10]   Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins [J].
Dye, Billy T. ;
Schulman, Brenda A. .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2007, 36 :131-150