The experiments here were undertaken to determine the feasibility of increasing the cell surface expression of voltage-gated ion channels in cardiac cells in vivo and to explore the functional consequences of ectopic channel expression. Transgenic mice expressing a green fluorescent protein (GFP)-tagged, voltage-gated K+ (Kv) channel alpha -subunit, Kv1.5-GFP, driven by the cardiac-specific alpha -MHC promoter, were generated. In recent studies, Kv1.5 has been shown to encode the micromolar 4-aminopyridine (4-AP)-sensitive delayed rectifier K+ current (I-K,I-slow) in mouse myocardium. Unexpectedly, Kv1.5-GFP expression is heterogeneous in the ventricles of these animals. Although no electrocardiographic abnormalities were evident, expression of Kv1.5-GFP results in marked decreases in action potential durations in GFP-positive ventricular myocytes. In voltage-clamp recordings from GFP-positive ventricular myocytes, peak outward K+ currents are significantly higher, and their waveforms are distinct from those recorded from wild-type cells. Pharmacological experiments revealed a selective increase in a micromolar 4-AP-sensitive current, similar to the 4-AP-sensitive component of I-K,I-slow in wild-type cells. The inactivation rate of the "overexpressed" current, however, is significantly slower than the Kv1.5-encoded component of I-K,I-slow in wild-type cells, suggesting differences in association with accessory subunits and/or posttranslational processing.