A high- resolution atlas of nucleosome occupancy in yeast

被引:654
作者
Lee, William
Tillo, Desiree
Bray, Nicolas
Morse, Randall H.
Davis, Ronald W.
Hughes, Timothy R.
Nislow, Corey [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[2] Stanford Genome Technol, Palo Alto, CA 94304 USA
[3] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5S 1A8, Canada
[4] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA
[5] Terrence Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada
[6] Banting & Best Dept Med Res, Toronto, ON M5S 1L6, Canada
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1038/ng2117
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We present the first complete high-resolution map of nucleosome occupancy across the whole Saccharomyces cerevisiae genome, identifying over 70,000 positioned nucleosomes occupying 81% of the genome. On a genome-wide scale, the persistent nucleosome-depleted region identified previously in a subset of genes demarcates the transcription start site. Both nucleosome occupancy signatures and overall occupancy correlate with transcript abundance and transcription rate. In addition, functionally related genes can be clustered on the basis of the nucleosome occupancy patterns observed at their promoters. A quantitative model of nucleosome occupancy indicates that DNA structural features may account for much of the global nucleosome occupancy.
引用
收藏
页码:1235 / 1244
页数:10
相关论文
共 49 条
  • [31] ACTION OF MICROCOCCAL NUCLEASE ON CHROMATIN AND LOCATION OF HISTONE H-1
    NOLL, M
    KORNBERG, RD
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1977, 109 (03) : 393 - 404
  • [32] High-throughput mapping of the chromatin structure of human promoters
    Ozsolak, Fatih
    Song, Jun S.
    Liu, X. Shirley
    Fisher, David E.
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (02) : 244 - 248
  • [33] Conformational and physicochemical DNA features specific for transcription factor binding sites
    Ponomarenko, JV
    Ponomarenko, MP
    Frolov, AS
    Vorobyev, DG
    Overton, GC
    Kolchanov, NA
    [J]. BIOINFORMATICS, 1999, 15 (7-8) : 654 - 668
  • [34] Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin
    Raisner, RM
    Hartley, PD
    Meneghini, MD
    Bao, MZ
    Liu, CL
    Schreiber, SL
    Rando, OJ
    Madhani, HD
    [J]. CELL, 2005, 123 (02) : 233 - 248
  • [35] The structure of DNA in the nucleosome core
    Richmond, TJ
    Davey, CA
    [J]. NATURE, 2003, 423 (6936) : 145 - 150
  • [36] Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation
    Roth, FP
    Hughes, JD
    Estep, PW
    Church, GM
    [J]. NATURE BIOTECHNOLOGY, 1998, 16 (10) : 939 - 945
  • [37] SEQUENCE PERIODICITIES IN CHICKEN NUCLEOSOME CORE DNA
    SATCHWELL, SC
    DREW, HR
    TRAVERS, AA
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1986, 191 (04) : 659 - 675
  • [38] A genomic code for nucleosome positioning
    Segal, Eran
    Fondufe-Mittendorf, Yvonne
    Chen, Lingyi
    Thastroem, AnnChristine
    Field, Yair
    Moore, Irene K.
    Wang, Ji-Ping Z.
    Widom, Jonathan
    [J]. NATURE, 2006, 442 (7104) : 772 - 778
  • [39] Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast
    Sekinger, EA
    Moqtaderi, Z
    Struhl, K
    [J]. MOLECULAR CELL, 2005, 18 (06) : 735 - 748
  • [40] Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles
    Sivolob, A
    De Lucia, F
    Alilat, M
    Prunell, A
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2000, 295 (01) : 55 - 69