Direct Sonochemical Synthesis of Manganese Octahedral Molecular Sieve (OMS-2) Nanomaterials Using Cosolvent Systems, Their Characterization, and Catalytic Applications

被引:108
作者
Dharmarathna, Saminda [1 ]
King'ondu, Cecil K. [1 ]
Pedrick, Wyatt [1 ]
Pahalagedara, Lakshitha [1 ]
Suib, Steven L. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
关键词
self-assembly; catalysis; nanorods; microstructure; sonochemistry; RUTHENIUM BIMETALLIC NANOPARTICLES; PARTICLE-SIZE; LATTICE OXYGEN; BENZYL ALCOHOL; OXIDATION; OXIDE; MICROWAVE; K-OMS-2; SURFACE; TIO2;
D O I
10.1021/cm203366m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A rapid, direct sonochemical method has successfully been developed to synthesize cryptomelane-type manganese octahedral molecular sieve (OMS-2) materials. Very high surface area of 288 +/- 1 m(2)/g and small particle sizes in the range of 1-7 nm were produced under nonthermal conditions. No further processing such as calcination was needed to obtain the pure cryptomelane phase. A cosolvent system was utilized to reduce the reaction time and to obtain higher surface areas. Reaction time was reduced by 50% using water/acetone mixed phase solvent systems. The cryptomelane phase was obtained with 5% acetone after 2 h of sonication at ambient temperature. Reaction time, temperature, and acetone concentration were identified as the most important parameters in the formation of the pure cryptomelane phase. OMS materials synthesized using the above-mentioned method were characterized by X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transformation infrared spectroscopy (FTIR). OMS-2 materials synthesized using sonochemical methods (K-OMS-2(SC)) possess greater amounts of defects and hence show excellent catalytic performances for oxidation of benzyl alcohol as compared to OMS-2 synthesized using reflux methods (K-OMS-2(REF)) and commercial MnO2.
引用
收藏
页码:705 / 712
页数:8
相关论文
共 48 条
[1]   Sonochemical synthesis of Au-Ag core-shell bimetallic nanoparticles [J].
Anandan, Sambandam ;
Grieser, Franz ;
Ashokkumar, Muthupandian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (39) :15102-15105
[2]   Applications of Ultrasound to the Synthesis of Nanostructured Materials [J].
Bang, Jin Ho ;
Suslick, Kenneth S. .
ADVANCED MATERIALS, 2010, 22 (10) :1039-1059
[3]   Chemistry - Oxygen vacancies and catalysis on ceria surfaces [J].
Campbell, CT ;
Peden, CHF .
SCIENCE, 2005, 309 (5735) :713-714
[4]   Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and Solvent Properties [J].
Cheng, Qiaohuan ;
Debnath, Sourabhi ;
Gregan, Elizabeth ;
Byrne, Hugh J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :8821-8827
[5]   Pore structure and graphitic surface nature of ordered mesoporous carbons probed by low-pressure nitrogen adsorption [J].
Darmstadt, H ;
Roy, C ;
Kaliaguine, S ;
Joo, SH ;
Ryoo, R .
MICROPOROUS AND MESOPOROUS MATERIALS, 2003, 60 (1-3) :139-149
[6]   SYNTHESIS AND CHARACTERIZATION OF OCTAHEDRAL MOLECULAR-SIEVES (OMS-2) HAVING THE HOLLANDITE STRUCTURE [J].
DEGUZMAN, RN ;
SHEN, YF ;
NETH, EJ ;
SUIB, SL ;
OYOUNG, CL ;
LEVINE, S ;
NEWSAM, JM .
CHEMISTRY OF MATERIALS, 1994, 6 (06) :815-821
[7]   Thickness-dependent crystallinity of sputter-deposited titania [J].
DeLoach, JD ;
Aita, CR .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1998, 16 (03) :1963-1968
[8]   Sonochemical preparation of hollow nanospheres and hollow nanocrystals [J].
Dhas, NA ;
Suslick, KS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) :2368-2369
[9]   Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method [J].
Ding, YS ;
Shen, XF ;
Sithambaram, S ;
Gomez, S ;
Kumar, R ;
Crisostomo, VMB ;
Suib, SL ;
Aindow, M .
CHEMISTRY OF MATERIALS, 2005, 17 (21) :5382-5389
[10]   Plasma formation and temperature measurement during single-bubble cavitation [J].
Flannigan, DJ ;
Suslick, KS .
NATURE, 2005, 434 (7029) :52-55