Different charge-storage mechanisms in disulfide vanadium and vanadium carbide monolayer

被引:79
作者
Ji, Xiao [1 ]
Xu, Kui [1 ]
Chen, Chi [1 ]
Zhang, Bao [1 ]
Wan, Houzhao [1 ]
Ruan, Yunjun [1 ]
Miao, Ling [1 ]
Jiang, Jianjun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL DOUBLE-LAYER; LI ION BATTERIES; AB-INITIO; ANODE MATERIAL; SUPERCAPACITOR; TRANSITION; GRAPHENE; INTERCALATION; 1ST-PRINCIPLES; ELECTRODES;
D O I
10.1039/c5ta01003a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) transition-metal (TM) compound nanomaterials, due to their high-surface-area and large potential charge capability of TM atoms, have been widely investigated as electrochemical capacitors. However, the understanding of charge-storage mechanisms of 2D transition-metal compounds as electrode materials is still limited. In this study, using density functional theory computations, we systematically investigate the electrochemical properties of monolayer VS2 and V2C. Their electronic structures show a significant electron storage capability of around 0.25 V, referenced to the standard hydrogen electrode, and indicate redox pseudocapacitance characteristics as cathodes. The different charge densities visually confirm that excess electrons tend to localize in the vanadium atoms nearby contact-adsorbed Li ions, corresponding to the redox of vanadium atoms. In contrast, only the electric double layer acts as a charge-storage mechanism in the V2C monolayer. However, the O saturation would induce redox pseudocapacitance in the V2C monolayer. Furthermore, the calculated metallic behavior and low Li ion diffusion barriers substantiate that V2C and VS2 monolayers would manifest low resistance in the charging process. Our findings provide insights for the different charge-storage mechanism of VS2 and V2C monolayers.
引用
收藏
页码:9909 / 9914
页数:6
相关论文
共 48 条
[1]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[2]   High-capacity hydrogen storage by metallized graphene [J].
Ataca, C. ;
Akturk, E. ;
Ciraci, S. ;
Ustunel, H. .
APPLIED PHYSICS LETTERS, 2008, 93 (04)
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   First-principles study of metal adatom adsorption on graphene [J].
Chan, Kevin T. ;
Neaton, J. B. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2008, 77 (23)
[5]  
Conway B., 1999, Scientific Fundamentals and Technological Applications
[6]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[7]  
Da Silveira Firmiano E. G., 2014, ADV ENERGY MATER, V4
[8]   Ion Intercalation into Two-Dimensional Transition-Metal Carbides: Global Screening for New High-Capacity Battery Materials [J].
Eames, Christopher ;
Islam, M. Saiful .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) :16270-16276
[9]   Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors [J].
Feng, Jun ;
Sun, Xu ;
Wu, Changzheng ;
Peng, Lele ;
Lin, Chenwen ;
Hu, Shuanglin ;
Yang, Jinlong ;
Xie, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) :17832-17838
[10]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904