AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold

被引:141
作者
Meyerhoff, O
Müller, K
Roelfsema, MR
Latz, A
Lacombe, B
Hedrich, R
Dietrich, P
Becker, D
机构
[1] Univ Wurzburg, D-97082 Wurzburg, Germany
[2] CNRS, INRA, UM2, UMR 5004, F-34060 Montpellier, France
[3] Univ Erlangen Nurnberg, Inst Mol Pflanzenphysiol, D-91058 Erlangen, Germany
关键词
calcium; cold; glutamate; receptor; touch;
D O I
10.1007/s00425-005-1551-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis genome encodes for 20 members of putative ligand-gated channels, termed glutamate receptors (GLR). Despite the fact that initial studies suggested a role for GLRs in various aspects of photomorphogenesis, calcium homeostasis or aluminium toxicity, their functional properties and physiological role in plants remain elusive. Here, we have focussed on AtGLR3.4, which is ubiquitously expressed in Arabidopsis including roots, vascular bundles, mesophyll cells and guard cells. AtGLR3.4 encodes a glutamate-, touch-, and cold-sensitive member of this gene family. Abiotic stress stimuli such as touch, osmotic stress or cold stimulated AtGLR3.4 expression in an abscisic acid-independent, but calcium-dependent manner. In plants expressing the Ca2+ -reporter apoaequorin, glutamate as well as cold elicited cytosolic calcium elevations. Upon glutamate treatment of mesophyll cells, the plasma membrane depolarised by about 120 mV. Both glutamate responses were transient in nature, sensitive to glutamate receptor antagonists, and were subject to desensitisation. One hour after eliciting the first calcium signal, a 50% recovery from desensitisation was observed, reflecting the stimulus-induced fast activation of AtGLR3.4 transcription. We thus conclude that AtGLR3.4 in particular and GLRs in general could play an important role in the Ca2+ -based, fast transmission of environmental stress.
引用
收藏
页码:418 / 427
页数:10
相关论文
共 24 条
[1]   Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+ [J].
Baum, G ;
Long, JC ;
Jenkins, GI ;
Trewavas, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13554-13559
[2]   AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner [J].
Becker, D ;
Geiger, D ;
Dunkel, M ;
Roller, A ;
Bertl, A ;
Latz, A ;
Carpaneto, A ;
Dietrich, P ;
Roelfsema, MRG ;
Voelker, C ;
Schmidt, D ;
Mueller-Roeber, B ;
Czempinski, K ;
Hedrich, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15621-15626
[3]   GABA signaling:: a conserved and ubiquitous mechanism [J].
Bouché, N ;
Lacombe, B ;
Fromm, H .
TRENDS IN CELL BIOLOGY, 2003, 13 (12) :607-610
[4]   Identification and partial characterization of a coniferyl alcohol oxidase from lignifying xylem of Sitka spruce (Picea sitchensis) [J].
Richardson, A ;
Stewart, D ;
McDougall, GJ .
PLANTA, 1997, 203 (01) :35-43
[5]   Arabidopsis mutants resistant to S(+)-β-methyl-α, β-diaminopropionic acid, a cycad-derived glutamate receptor agonist [J].
Brenner, ED ;
Martinez-Barboza, N ;
Clark, AP ;
Liang, QS ;
Stevenson, DW ;
Coruzzi, GM .
PLANT PHYSIOLOGY, 2000, 124 (04) :1615-1624
[6]   Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana [J].
Chiu, JC ;
Brenner, ED ;
DeSalle, R ;
Nitabach, MN ;
Holmes, TC ;
Coruzzi, GM .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (07) :1066-1082
[7]   Carbon and nitrogen sensing and signaling in plants: emerging 'matrix effects' [J].
Coruzzi, GM ;
Zhou, L .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (03) :247-253
[8]   Glutamate receptors in plants [J].
Davenport, R .
ANNALS OF BOTANY, 2002, 90 (05) :549-557
[9]   Glutamate-gated calcium fluxes in Arabidopsis [J].
Dennison, KL ;
Spalding, EP .
PLANT PHYSIOLOGY, 2000, 124 (04) :1511-1514
[10]   A role for glycine in the gating of plant NMDA-like receptors [J].
Dubos, C ;
Huggins, D ;
Grant, GH ;
Knight, MR ;
Campbell, MM .
PLANT JOURNAL, 2003, 35 (06) :800-810