Fluctuation theorem for Hamiltonian systems: Le Chatelier's principle

被引:44
作者
Evans, DJ
Searles, DJ
Mittag, E
机构
[1] Australian Natl Univ, Res Sch Chem, Canberra, ACT 2601, Australia
[2] Griffith Univ, Sch Sci, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.051105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
De Groot S. R., 1984, NONEQUILIBRIUM THERM
[2]   PROBABILITY OF 2ND LAW VIOLATIONS IN SHEARING STEADY-STATES [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2401-2404
[3]   EQUILIBRIUM MICROSTATES WHICH GENERATE 2ND LAW VIOLATING STEADY-STATES [J].
EVANS, DJ ;
SEARLES, DJ .
PHYSICAL REVIEW E, 1994, 50 (02) :1645-1648
[4]   Steady states, invariant measures, and response theory [J].
Evans, DJ ;
Searles, DJ .
PHYSICAL REVIEW E, 1995, 52 (06) :5839-5848
[5]   Causality, response theory, and the second law of thermodynamics [J].
Evans, DJ ;
Searles, DJ .
PHYSICAL REVIEW E, 1996, 53 (06) :5808-5815
[6]  
EVANS DJ, 1990, STATMECH NONEQUILIBR
[7]   DYNAMICAL ENSEMBLES IN NONEQUILIBRIUM STATISTICAL-MECHANICS [J].
GALLAVOTTI, G ;
COHEN, EGD .
PHYSICAL REVIEW LETTERS, 1995, 74 (14) :2694-2697
[8]   DYNAMICAL ENSEMBLES IN STATIONARY STATES [J].
GALLAVOTTI, G ;
COHEN, EGD .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (5-6) :931-970
[9]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[10]   Hamiltonian derivation of a detailed fluctuation theorem [J].
Jarzynski, C .
JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) :77-102