Scale-free networks from a Hamiltonian dynamics

被引:43
作者
Baiesi, M [1 ]
Manna, SS
机构
[1] Univ Padua, Dipartimento Fis, INFM, I-35131 Padua, Italy
[2] Satyendra Nath Bose Natl Ctr Basic Sci, Salt Lake 700098, Kolkata, India
关键词
D O I
10.1103/PhysRevE.68.047103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible is introduced. By applying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power-law form in an intermediate range of the parameters used. Interestingly, in the same range we find nontrivial hierarchical clustering.
引用
收藏
页数:4
相关论文
共 39 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[3]  
BAIESI M, UNPUB
[4]  
BARABASI A.L, 2003, Linked: How everything is connected to everything else
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]  
BARABASI AL, 2004, UNPUB SITG P COMPL N
[7]  
BAUER M, CONDMAT0206150
[8]   Correlated random networks -: art. no. 228701 [J].
Berg, J ;
Lässig, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (22) :228701-228701
[9]  
BERG J, CONDMAT0207711
[10]   Bose-Einstein condensation in complex networks [J].
Bianconi, G ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5632-5635