Kinetic theory of point vortices: Diffusion coefficient and systematic drift

被引:63
作者
Chavanis, PH
机构
[1] Univ Toulouse 3, Phys Quant Lab, F-31062 Toulouse, France
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 02期
关键词
D O I
10.1103/PhysRevE.64.026309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a kinetic theory for point vortices in two-dimensional hydrodynamics. Using standard projection operator techniques, we derive a Fokker-Planck equation describing the relaxation of a "test" vortex in a bath of "field" vortices at statistical equilibrium. The relaxation is due to the combined effect of a diffusion and a drift. The drift is shown to be responsible for the organization of point vortices at negative temperatures. A description that goes beyond the thermal bath approximation is attempted. A new kinetic equation is obtained which respects all conservation laws of the point vortex system and satisfies a H theorem. Close to equilibrium, this equation reduces to the ordinary Fokker-Planck equation.
引用
收藏
页码:28 / 263092
页数:28
相关论文
共 36 条
[31]   The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach [J].
Robert, R ;
Rosier, C .
JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (3-4) :481-515
[32]   RELAXATION TOWARDS A STATISTICAL EQUILIBRIUM STATE IN 2-DIMENSIONAL PERFECT FLUID-DYNAMICS [J].
ROBERT, R ;
SOMMERIA, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2776-2779
[33]   STATISTICAL EQUILIBRIUM STATES FOR 2-DIMENSIONAL FLOWS [J].
ROBERT, R ;
SOMMERIA, J .
JOURNAL OF FLUID MECHANICS, 1991, 229 :291-310
[34]   Numerical renormalization group of vortex aggregation in two-dimensional decaying turbulence: The role of three-body interactions [J].
Sire, C ;
Chavanis, PH .
PHYSICAL REVIEW E, 2000, 61 (06) :6644-6653
[35]   Lagrangian dynamics in high-dimensional point-vortex systems [J].
Weiss, JB ;
Provenzale, A ;
McWilliams, JC .
PHYSICS OF FLUIDS, 1998, 10 (08) :1929-1941
[36]   TIME-DEPENDENT PROJECTION-OPERATOR APPROACH TO MASTER EQUATIONS FOR COUPLED SYSTEMS [J].
WILLIS, CR ;
PICARD, RH .
PHYSICAL REVIEW A, 1974, 9 (03) :1343-1358