Homogenization of Hamilton-Jacobi equations: Numerical methods

被引:17
作者
Achdou, Yves [1 ,2 ]
Camilli, Fabio [3 ]
Dolcetta, Italo Capuzzo [4 ]
机构
[1] Univ Paris Diderot, UFR Math, F-75251 Paris 05, France
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67040 Laquila, Italy
[4] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Hamilton-Jacobi equation; viscosity solution; homogenization; numerical approximation;
D O I
10.1142/S0218202508002978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study approximation strategies for the limit problem arising in the homogenization of Hamilton-Jacobi equations. They involve first an approximation of the effective Hamiltonian then a discretization of the Hamilton-Jacobi equation with the approximate effective Hamiltonian. We give a global error estimate which takes into account all the parameters involved in the approximation.
引用
收藏
页码:1115 / 1143
页数:29
相关论文
共 27 条
[1]   Singular perturbations of nonlinear degenerate parabolic PDEs: A general convergence result [J].
Alvarez, O ;
Bardi, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (01) :17-61
[2]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[3]  
[Anonymous], J DIFFERENTIAL EQUAT
[4]   Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations [J].
Bacaër, N .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (06) :1185-1195
[5]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[6]  
CAMILLI F, APPL MATH O IN PRESS
[7]  
Capuzzo-Dolcetta I, 2001, INDIANA U MATH J, V50, P1113
[8]  
CAPUZZODOLCETTA I, 1984, APPL MATH OPT, V11, P161, DOI https://doi.org/10.1007/bf01442176
[9]  
Cockburn B, 2002, SIAM PROC S, P67
[10]  
Concordel MC, 1996, INDIANA U MATH J, V45, P1095