Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide

被引:93
作者
Cui, H [1 ]
Zhang, ZF [1 ]
Shi, MJ [1 ]
Xu, Y [1 ]
Wu, YL [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China
关键词
D O I
10.1021/ac050882q
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Light emission at similar to 415 nm was observed for gold particles with diameters of 2.6-6.0 nm dispersed in a solution containing bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide. It was found that the light intensity was independent of the protecting reagents of the gold nanoparticles with similar size, the light intensity with gold nanoparticles of 5.0 and 6.0 nm in diameter was stronger than that with gold nanoparticles of 2.6 and 2.8 nm in diameter, and the light intensity increased linearly with the concentration of the gold nanoparticles using 6.0-nm gold nanoparticles. The gold nanoparticles were identified as emitting species, and the quantum yield was determined to be (2.8 +/- 0.3) x 10(-5) using 6.0-nm gold nanoparticles. The light emission is suggested to involve a sequence of steps: the oxidation reaction of bis(2,4,6-trichlorophenyl) oxalate with hydrogen peroxide yielding an energy-rich intermediate 1,2-dioxetanedione, the energy transfer from this intermediate to gold nanoparticles, and the radiative relaxation of the as-formed exited-state gold nanoparticles. The observed luminescence is expected to find applications in the field of bioanalysis owing to the excellent biocompatibility and relatively high stability of gold nanoparticles.
引用
收藏
页码:6402 / 6406
页数:5
相关论文
共 32 条
[1]   Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles [J].
Bae, Y ;
Myung, N ;
Bard, AJ .
NANO LETTERS, 2004, 4 (06) :1153-1161
[2]   Near-infrared luminescence from small gold nanocrystals [J].
Bigioni, TP ;
Whetten, RL ;
Dag, Ö .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (30) :6983-6986
[3]   PHOTOINDUCED LUMINESCENCE FROM THE NOBLE-METALS AND ITS ENHANCEMENT ON ROUGHENED SURFACES [J].
BOYD, GT ;
YU, ZH ;
SHEN, YR .
PHYSICAL REVIEW B, 1986, 33 (12) :7923-7936
[4]   Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J].
Brown, KR ;
Fox, AP ;
Natan, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (05) :1154-1157
[5]   Chemiluminescent reactions induced by gold nanoparticles [J].
Cui, H ;
Zhang, ZF ;
Shi, MJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) :3099-3103
[6]   Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode [J].
Cui, H ;
Zou, GZ ;
Lin, XQ .
ANALYTICAL CHEMISTRY, 2003, 75 (02) :324-331
[7]   Analysis of the nature of oxyanion adsorption on gold nanomaterial surfaces [J].
Cumberland, SL ;
Strouse, GF .
LANGMUIR, 2002, 18 (01) :269-276
[8]   Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots [J].
Ding, ZF ;
Quinn, BM ;
Haram, SK ;
Pell, LE ;
Korgel, BA ;
Bard, AJ .
SCIENCE, 2002, 296 (5571) :1293-1297
[9]   Automated flow injection analyzer with on-line solid-phase extraction and chemiluminescence detection for the determination of dodecylamine in diesel fuels [J].
Fletcher, PJ ;
Andrew, KN ;
Forbes, S ;
Worsfold, PJ .
ANALYTICAL CHEMISTRY, 2003, 75 (11) :2618-2625
[10]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22