Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems

被引:215
作者
dos Angelos, Eduardo Werley S. [1 ]
Saavedra, Osvaldo R. [1 ]
Carmona Cortes, Omar A. [2 ]
de Souza, Andre Nunes [3 ]
机构
[1] Univ Fed Maranhao, Power Syst Grp, BR-65085580 Sao Luis, Maranhao, Brazil
[2] Tech Fed Inst, BR-65030005 Sao Luis, Maranhao, Brazil
[3] State Univ Sao Paulo, BR-17033360 Bauru, Brazil
关键词
Data mining; electricity theft; fuzzy clustering; nontechnical losses;
D O I
10.1109/TPWRD.2011.2161621
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.
引用
收藏
页码:2436 / 2442
页数:7
相关论文
共 24 条
[11]  
Fayyad U, 1996, AI MAG, V17, P37
[12]  
Federal Court of Audit, 2007, 02561920072 TC FED C
[13]  
Goldshmidit R., 2005, DATA MINING GUIA PRA
[14]  
IEA, 2004, IEA EL STAT
[15]  
Jiang R, 2002, IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXHIBITION 2002: ASIA PACIFIC, VOLS 1-3, CONFERENCE PROCEEDINGS, P2251, DOI 10.1109/TDC.2002.1177814
[16]  
Kou Y., 2004, P IEEE INT C NETW SE, P21
[17]  
Muniz C., 2009, JOINT INT FUZZ SYST
[18]   Non-Technical Loss Analysis for Detection of Electricity Theft using Support Vector Machines [J].
Nagi, J. ;
Mohammad, A. M. ;
Yap, K. S. ;
Tiong, S. K. ;
Ahmed, S. K. .
2008 IEEE 2ND INTERNATIONAL POWER AND ENERGY CONFERENCE: PECON, VOLS 1-3, 2008, :907-912
[19]   Nontechnical Loss Detection for Metered Customers in Power Utility Using Support Vector Machines [J].
Nagi, Jawad ;
Yap, Keem Siah ;
Tiong, Sieh Kiong ;
Ahmed, Syed Khaleel ;
Mohamad, Malik .
IEEE TRANSACTIONS ON POWER DELIVERY, 2010, 25 (02) :1162-1171
[20]   Power utility nontechnical loss analysis with extreme learning machine method [J].
Nizar, A. H. ;
Dong, Z. Y. ;
Wang, Y. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (03) :946-955