Maintaining the extent of a moving point set

被引:25
作者
Agarwal, PK
Guibas, LJ
Hershberger, J
Veach, E
机构
[1] Duke Univ, Dept Comp Sci, Ctr Geometr Comp, Durham, NC 27708 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Mentor Graph Corp, Wilsonville, OR 97070 USA
[4] Pixar Animat Studios, Richmond, CA 94804 USA
关键词
D O I
10.1007/s00454-001-0019-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of it moving points in the plane. We give new efficient and compact kinetic data structures for maintaining the diameter, width, and smallest area or perimeter bounding rectangle of S. If the points in S move with algebraic motions, these structures process O(n(2+epsilon)) events. We also give constructions showing that Omega (n(2)) combinatorial changes are possible for these extent functions even if each point is moving with constant velocity. We give a similar construction and upper bound for the convex hull, improving known results.
引用
收藏
页码:353 / 374
页数:22
相关论文
共 16 条
[1]  
Agarwal P. K., 1998, P 9 ACM SIAM S DISCR, P107
[2]   Lower bounds for kinetic planar subdivisions [J].
Agarwal, PK ;
Basch, J ;
de Berg, M ;
Guibas, LJ ;
Hershberger, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (04) :721-733
[3]   The overlay of lower envelopes and its applications [J].
Agarwal, PK ;
Schwarzkopf, O ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) :1-13
[4]   Parametric and kinetic minimum spanning trees [J].
Agarwal, PK ;
Eppstein, D ;
Guibas, LJ ;
Henzinger, MR .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :596-605
[5]   SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS [J].
ATALLAH, MJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (12) :1171-1181
[6]  
Basch J, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P102
[7]   Data structures for mobile data [J].
Basch, J ;
Guibas, LJ ;
Hershberger, J .
JOURNAL OF ALGORITHMS, 1999, 31 (01) :1-28
[8]  
Basch J., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P469, DOI 10.1145/262839.263089
[9]  
Basch J., 1999, P 10 ACM SIAM S DISC, P327
[10]   DYNAMIC ALGORITHMS IN COMPUTATIONAL GEOMETRY [J].
CHIANG, YJ ;
TAMASSIA, R .
PROCEEDINGS OF THE IEEE, 1992, 80 (09) :1412-1434