Recognition of flat orbifolds and the classification of tilings in R3

被引:10
作者
Delgado-Friedrichs, O [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
D O I
10.1007/s00454-001-0022-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We discuss criteria for an orbifold to carry a flat geometry, i.e., one which is modelled on euclidean geometry, and show how these: lead to a practical flatness test in the three-dimensional case. This has immediate applications in combinatorial tiling theory, namely in the classification of three-dimensional periodic tilings up to equivariant equivalence, and in the material sciences.
引用
收藏
页码:549 / 571
页数:23
相关论文
共 25 条
[1]  
Balke L, 1996, GEOMETRIAE DEDICATA, V60, P89
[2]  
BALKE L, 1996, CONTRIBUTIONS ALGEBR, V0037, P00017
[4]  
DELGADO O, 1992, GEOMETRIAE DEDICATA, V42, P43
[5]   THE CLASSIFICATION OF FACE-TRANSITIVE PERIODIC 3-DIMENSIONAL TILINGS [J].
DRESS, AWM ;
HUSON, DH ;
MOLNAR, E .
ACTA CRYSTALLOGRAPHICA SECTION A, 1993, 49 :806-817
[6]  
DRESS AWM, 1987, GEOMETRIAE DEDICATA, V24, P295
[8]   CRYSTALLIZATION MOVES [J].
FERRI, M ;
GAGLIARDI, C .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 100 (01) :85-103
[9]   Tiling space by platonic solids, I [J].
Friedrichs, OD ;
Huson, DH .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (02) :299-315
[10]   4-regular vertex-transitive tilings of E3 [J].
Friedrichs, OD ;
Huson, DH .
DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (2-3) :279-292